Oxidative stress and its role in the development of autoimmune thyroid diseases

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


A large number of socially significant diseases is accompanied with oxidative stress and carry with tissue damage. Free radicals play a crucial role in the development of these diseases. Similar processes occur under the influence of ionizing radiation and bacterial infections. Recently, was indicated the significant role of oxidative stress in the development of autoimmune thyroiditis. It is assumed that the synthesis of thyroid hormones depends on the concentration of H2O2, which, due to its high toxicity, must be in strict accordance with the activity of antioxidant systems. Many biochemically negative processes occur on the apical membrane of the thyrocyte, which allows limiting the effect of free radicals and avoid cell destruction. However, in pathological conditions, enzymatic systems are disturbed and their components become abnormally activated in the cytoplasm, and it is leads to functional and morphological disorders. A deeper understanding of oxidative stress and its role in the development of autoimmune thyroiditis can contribute to the identification of new methods for its assessment, the expansion of therapeutic ranges for this disease. This review discusses oxidative stress, which is the accumulation of active damaging agents (free radicals, prooxidants, reactive oxygen species) that initiate cell damage and lead to the development of various pathological conditions.

Full Text

Restricted Access

About the authors

Anastasia A. Rybakova

Endocrinology Research Centre

Email: aamamykina@gmail.com
MD Moscow

Nadezhda M. Platonova

Endocrinology Research Centre

Email: doc-platonova@inbox.ru
MD, ScD Moscow

Ekaterina A. Troshina

Endocrinology Research Centre

Email: troshina@inbox.ru
MD, ScD, professor Moscow

Dmitriy Mikhaylovich Serkin

Email: serkind@yandex.ru


  1. Betteridge D. What is oxidative stress? Metabol. 2000;49(2 suppl 1): 3-8. doi: https://doi.org/10.1016/s0026-0495(00)80077-3
  2. Frijhoff J, Winyard PG, Zarkovic N, et al. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal. 2015;23(14):1144-1170. doi: https://doi.org/10.1089/ars.2015.6317
  3. Mancini A, Di Segni C, Raimondo S, et al. Thyroid hormones, oxidative stress, and inflammation. Mediators Inflamm. 2016;2016:1-12. doi: https://doi.org/10.1155/2016/6757154
  4. Zhang L, Wang X, Cueto R, et al. Biochemical basis and metabolic interplay of redox regulation. Redox Biol. 2019;26:101284. doi: https://doi.org/10.1016/j.redox.2019.101284
  5. Mancini A, Giacchi E, Raimondo S, et al. Hypothyroidism, oxidative stress and reproduction. Hypothyroidism – Influences and Treatments. 2012. doi: https://doi.org/10.5772/31939
  6. Dobrzynska MM, Baumgartner A, Anderson D. Antioxidants modulate thyroid hormone‐ and noradrenaline‐induced DNA damage in human sperm. Mutagenesis. 2004;19(4):325-330. doi: https://doi.org/10.1093/mutage/geh037
  7. Kowaltowski A, Costa A, Vercesi A. Activation of the potato plant uncoupling mitochondrial protein inhibits reactive oxygen species generation by the respiratory chain. FEBS Lett. 1998;425(2):213-216. doi: https://doi.org/10.1016/s0014-5793(98)00231-2
  8. Rebiger L, Lenzen S, Mehmeti I. Susceptibility of brown adipocytes to pro-inflammatory cytokine toxicity and reactive oxygen species. Biosci Rep. 2016;36(2):e00306-e00306. doi: https://doi.org/10.1042/bsr20150193
  9. Hoang T, Kuljanin M, Smith M, Jelokhani-Niaraki M. A biophysical study on molecular physiology of the uncoupling proteins of the central nervous system. Biosci Rep. 2015;35(4):e00226-e00226. doi: https://doi.org/10.1042/bsr20150130
  10. Petrovic N, Cvijic G, Davidovic V. Thyroxine and tri-iodothyronine differently affect uncoupling protein-1 content and antioxidant enzyme activities in rat interscapular brown adipose tissue. J Endocrinol. 2003;176(1):31-38. doi: https://doi.org/10.1677/joe.0.1760031
  11. Weiner J, Kranz M, Klöting N, et al. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice. Scientific Reports. 2016;6(1):38124. doi: https://doi.org/10.1038/srep38124
  12. Hima S, Sreeja S. Regulatory role of estrogen-induced reactive oxygen species in the modulatory function of UCP 2 in papillary thyroid cancer cells. IUBMB Life. 2015;67(11):837-846. doi: https://doi.org/10.1002/iub.1440
  13. Venditti P, Balestrieri M, Di Meo S, De Leo T. Effect of thyroid state on lipid peroxidation, antioxidant defences, and susceptibility to oxidative stress in rat tissues. J Endocrinol. 1997;155(1):151-157. doi: https://doi.org/10.1677/joe.0.1550151
  14. Venditti P, Meo S. Thyroid hormone-induced oxidative stress. Cell Mol Life Sci. 2006;63(4):414-434. doi: https://doi.org/10.1007/s00018-005-5457-9
  15. Silvestri E, Lombardi A, Coppola M, et al. Differential effects of 3,5-diiodo-L-thyronine and 3,5,3’-triiodo-L-thyronine on mitochondrial respiratory pathways in liver from hypothyroid rats. Cell Physiol Biochem. 2018;47(6):2471-2483. doi: https://doi.org/10.1159/000491620
  16. Huh K, Kwon T, Kim J, Park J. Role of the hepatic xanthine oxidase in thyroid dysfunction: effect of thyroid hormones in oxidative stress in rat liver. Arch Pharm Res. 1998;21(3):236-240. doi: https://doi.org/10.1007/bf02975281
  17. Elnakish MT, Ahmed AA, Mohler PJ, Janssen PM. Role of oxidative stress in thyroid hormone-induced cardiomyocyte hypertrophy and associated cardiac dysfunction: an undisclosed story. Oxid Med Cell Longev. 2015;854265. doi: https://doi.org/10.1155/2015/854265
  18. Marcocci C, Leo M, Altea M. Oxidative stress in graves’ disease. Eur Thyroid J. 2012;1(2):80-87. doi: https://doi.org/10.1159/000337976
  19. Zarkovic M. The role of oxidative stress on the pathogenesis of Graves’ disease. J Thyroid Res. 2012;302537. doi: https://doi.org/10.1155/2012/302537
  20. Mancini A, Raimondo S, Di Segni C, et al. Thyroid hormones and antioxidant systems: focus on oxidative stress in cardiovascular and pulmonary diseases. Int J Mol Sci. 2013;14(12):23893-23909. doi: https://doi.org/10.3390/ijms141223893
  21. Haribabu A, Reddy V, Pallavi C, et al. Evaluation of protein oxidation and its association with lipid peroxidation and thyrotropin levels in overt and subclinical hypothyroidism. Endocrine. 2013; 44(1):152-157. doi: https://doi.org/10.1007/s12020-012-9849-y
  22. Korkmaz H, Tabur S, Ozkaya M, et al. Paraoxonase and arylesterase levels in autoimmune thyroid diseases. Redox Report. 2016; 21(5):227-231. doi: https://doi.org/10.1080/13510002.2015.1107310
  23. Erdamar H, Demirci H, Yaman H, et al. The effect of hypothyroidism, hyperthyroidism, and their treatment on parameters of oxidative stress and antioxidant status. Clin Chem Lab Med. 2008; 46(7):1004-1010. doi: https://doi.org/10.1515/CCLM.2008.183
  24. Santi A, Duarte M, Moresco R, et al. Association between thyroid hormones, lipids and oxidative stress biomarkers in overt hypothyroidism. Clin Chem Lab Med. 2010;48(11):1635-1639. doi: https://doi.org/10.1515/CCLM.2010.309
  25. Nanda N, Bobby Z, Hamide A, et al. Association between oxidative stress and coronary lipid risk factors in hypothyroid women is independent of body mass index. Metabol. 2007;56(10):1350-1355. doi: https://doi.org/10.1016/j.metabol.2007.05.015
  26. Kebapcilar L, Akinci B, Bayraktar F, et al. Plasma thiobarbituric acid-reactive substance levels in subclinical hypothyroidism. Med Princ Pract. 2007;16(6):432-436. doi: https://doi.org/10.1159/000107747
  27. Santi A, Duarte MM, de Menezes CC, Loro VL. Association of lipids with oxidative stress biomarkers in subclinical hypothyroidism. Int J Endocrinol. 2012;856359. doi: https://doi.org/10.1155/2012/856359
  28. Mancini A, Festa R, Donna V, et al. Hormones and antioxidant systems: role of pituitary and pituitary-dependent axes. J Endocrinol Invest. 2010;33(6):422-433. doi: https://doi.org/10.1007/BF03346615
  29. Mancini A, Leone E, Silvestrini A, et al. Evaluation of antioxidant systems in pituitary-adrenal axis diseases. Pituitary. 2010;13(2):138-145. doi: https://doi.org/10.1007/s11102-009-0213-z
  30. Ozturk U, Vural P, Ozderya A, et al. Oxidative stress parameters in serum and low density lipoproteins of Hashimoto’s thyroiditis patients with subclinical and overt hypothyroidism. Int Immunopharm. 2012;14(4):349-352. doi: https://doi.org/10.1016/j.intimp.2012.08.010
  31. Ohye H, Sugawara M. Dual oxidase, hydrogen peroxide and thyroid diseases. Exp Biol Med (Maywood). 2010;235(4):424-433. doi: https://doi.org/10.1258/ebm.2009.009241
  32. Liu S, Zhang W, Zhang L, et al. Genetic and functional analysis of two missense DUOX2 mutations in congenital hypothyroidism and goiter. Oncotarget. 2016;9(4):4366-4374. doi: https://doi.org/10.18632/oncotarget.10525
  33. Rigutto S, Hoste C, Grasberger H, et al. Activation of dual oxidases Duox1 and Duox2: differential regulation mediated by camp-dependent protein kinase and protein kinase C-dependent phosphorylation. J Biol Chem. 2009;284(11):6725-6734. doi: https://doi.org/10.1074/jbc.M806893200
  34. Weber G, Rabbiosi S, Zamproni I, Fugazzola L. Genetic defects of hydrogen peroxide generation in the thyroid gland. J Endocrinol invest. 2013;36(4):261-266. doi: https://doi.org/10.3275/8847
  35. Hulur I, Hermanns P, Nestoris C, et al. A single copy of the recently identified dual oxidase maturation factor (DUOXA) 1 gene produces only mild transient hypothyroidism in a patient with a novel biallelic DUOXA2 mutation and monoallelic DUOXA1 deletion. JCEM. 2011;96(5):841-845. doi: https://doi.org/10.1210/jc.2010-2321
  36. Guichard C, Pedruzzi E, Fay M, et al. The Nox/Duox family of ROS-generating NADPH oxidases. (In French). Med Sci (Paris). 2006;22(11):953-959. doi: https://doi.org/10.1051/medsci/20062211953
  37. El-Hassani AR, Morand S, Boucher JL, et al. Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J Biol Chem. 2005;280(34):30046-30054. doi: https://doi.org/10.1074/jbc.M500516200
  38. Raad H, Eskalli Z, Corvilain B, et al. Thyroid hydrogen peroxide production is enhanced by the Th2 cytokines, IL-4 and IL-13, through increased expression of the dual oxidase 2 and its maturation factor DUOXA2. Free Radic Biol Med. 2013;56:216-225. doi: https://doi.org/10.1016/j.freeradbiomed.2012.09.003
  39. Karbownik-Lewinska M, Kokoszko-Bilska A. Oxidative damage to macromolecules in the thyroid ― experimental evidence. Thyroid Res. 2012;5(1):25. doi: https://doi.org/10.1186/1756-6614-5-25
  40. Zhang N, Wang L, Duan Q, et al. Metallothionein-I/II knockout mice aggravate mitochondrial superoxide production and peroxiredoxin 3 expression in thyroid after excessive iodide exposure. Oxid Med Cell Longev. 2015;267027. doi: https://doi.org/10.1155/2015/267027
  41. Vitale M, Matola TD, D’Ascoli F, et al. Iodide excess induces apoptosis in thyroid cells through a p53-independent mechanism involving oxidative stress. Endocrinol. 2000;141(2):598-605. doi: https://doi.org/10.1210/endo.141.2.7291
  42. Corvilain B, Collyn L, van Sande J, Dumont JE. Stimulation by iodide of H2O2 generation in thyroid slices from several species. Am J Physiol Endocrinol Metab. 2000;278(4):692-699. doi: https://doi.org/10.1152/ajpendo.2000.278.4.E692
  43. Seven A, Tasan E, Inci F, et al. Biochemical evaluation of oxidative stress in propylthiouracil treated hyperthyroid patients. Effects of vitamin C supplementation. Clin Chem Lab Med. 1998;36(10):767-770. doi: https://doi.org/10.1515/CCLM.1998.136
  44. Baskol G, Atmaca H, Tanrıverdi F, et al. Oxidative stress and enzymatic antioxidant status in patients with hypothyroidism before and after treatment. Exp Clin Endocrinol Diabetes. 2007;115(8):522-526. doi: https://doi.org/10.1055/s-2007-981457
  45. Chiu-Ugalde J, Wirth EK, Klein MO, et al. Thyroid function is maintained despite increased oxidative stress in mice lacking selenoprotein biosynthesis in thyroid epithelial cells. Antioxid Redox Signal. 2012;17(6):902-913. doi: https://doi.org/10.1089/ars.2011.4055
  46. Schmutzler C, Mentrup B, Schomburg L, et al. Selenoproteins of the thyroid gland: expression, localization and possible function of glutathione peroxidase 3. Biol Chem. 2007;388(10):1053-1059. doi: https://doi.org/10.1515/BC.2007.122
  47. Chakrabarti SK, Ghosh S, Banerjee S, et al. Oxidative stress in hypothyroid patients and the role of antioxidant supplementation. Indian J Endocrinol Metab. 2016;20(5):674-678. doi: https://doi.org/10.4103/2230-8210.190555
  48. Некрасова Т.А., Щербатюк Т.Г., Давыденко Д.В. и др. Особенности перекисного окисления липидов и белков при аутоиммунном тиреоидите без и с минимальной тиреоидной дисфункцией. Клиническая и экспериментальная тиреоидология. 2011;7:4:38-43. Nekrasova TA, Shcherbatyuk TG, Davydenko DV i dr. Peculiarities of lipid and protein peroxidation in autoimmune thyroiditis with and without mild thyroid dysfunction. Clinical and experimental thyroidology. 2011;7(4):38-43. (In Russ.). doi: https://doi.org/10.14341/ket20117438-43

Copyright (c) 2019 Rybakova A.A., Platonova N.M., Troshina E.A., Serkin D.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies