On Predicting Material and Structural Resources under Cyclic Loading

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Mathematical modelling of elastoplastic deformation and accumulation of material damage under proportional and non-proportional, isothermal and non-isothermal cyclic loading is considered. On the basis of the version of the theory of plasticity (which is a particular version of the theory of inelasticity and class one-dimensional flow theories) with combined hardening. The range of applicability of the version of the theory of plasticity is limited to small deformations of initially isotropic metals at temperatures when there are no phase transitions and strain rates, when dynamic and rheological effects can be neglected. A set of material functions closing the version of the theory of plasticity is given, and a basic experiment, based on the results of which material functions are determined. On the basis of the integration of the evolution equation for microstresses (deviator of the displacement of the loading surface center) with a rigid symmetrical cyclic loading with a constant swing of plastic deformation under conditions of the uniaxial stress state, the equation of the curve of low-cycle fatigue (from up to cycles) is obtained. To determine the parameters entering the equation of the curve of low-cycle fatigue, the results of the basic experiment are sufficient. For SS304 stainless steel, a low-cycle fatigue curve is constructed, which is compared with the experimental data in the range from up to cycles to failure. Also for SS304 stainless steel, processes of non-linear summation of damages are analyzed for two-block rigid cyclic loads. It is shown that the transition from a larger swing of deformations to a smaller one significantly reduces the overall durability. The results of the calculations are compared with the results of the experiments. Further, the fatigue of SS304 stainless steel is considered under proportional and disproportional hard cyclic loads ranging from up to cycles to failure. It is shown that the greatest damaging effect belongs to loading along the trajectory of deformations in the form of a circle. The calculated fatigue curves for different deformation trajectories are compared with the results of the experiments. Predicting the structural material resource under nonisothermal cyclic loading is carried out on the basis of the durability analysis of the edge of the combustion chamber of the diesel piston and the uncooled conical nozzle of the LPRE nozzle under heat changes. In the first case, a uniaxial stress state (simple non-isothermal loading) is realized at the edge of the combustion chamber, and in the second case a biaxial stress state (complex non-isothermal loading) is realized too. We predicted the resource on the basis of the kinetic equation of damage accumulation, included in the equation of the theory of plasticity, and also on the basis of the deformation-kinetic criterion of low-cycle fatigue. Estimation of the resource on the basis of the deformation-kinetic criterion gives overestimated results (by a factor of 5-6) in comparison with the results obtained on the basis of the kinetic equation of plasticity theory and the corresponding experimental results with a good agreement of the latter.

Full Text

Restricted Access

About the authors

V S Bondar

Moscow Polytechnic University

Author for correspondence.
Email: mia.letum@gmail.com
Russian Federation, 1

D R Abashev

Moscow Polytechnic University

Email: mia.letum@gmail.com

V K Petrov

Moscow Polytechnic University

Email: mia.letum@gmail.com

References

  1. Бондарь В.С. Неупругое поведение и разрушение материалов и конструкции при сложном неизотермическом нагружении: дис. … д-ра физ.-мат. наук. - М.: Изд-во МАМИ, 1990. - 314 с.
  2. Бондарь В.С. Неупругость. Варианты теории. - М.: Физматлит, 2004. - 144 с.
  3. Bondar V.S. Inelasticity. Variants of the theory. - New York: Begell House, 2013. - 194 p.
  4. Бондарь В.С., Даншин В.В., Кондратенко А.А. Вариант теории термопластичности // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2015. - № 2. - С. 21-35. doi: 10.15593/perm.mech/2015.2.02
  5. Бондарь В.С., Даншин В.В., Кондратенко А.А. Вариант теории термовязкопластичности // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2016. - № 1. - С. 39-56.
  6. Макаров Д.А. Математическое моделирование процессов неизотермического неупругого деформирования и накопления повреждений в конструкционных материалах: дис.. канд. физ.-мат. наук. - М.: Изд-во МАМИ, 2005. - 108 с.
  7. Волков И.А., Коротких Ю.Г. Уравнения состояния вязкоупругопластических сред с повреждениями. - М.: Физматлит, 2008. - 424 с.
  8. Прикладная теория пластичности / Ф.М. Митенков, И.А. Волков, Л.А. Игумнов, А.В. Каплиенко, Ю.Г. Коротких, В.А. Панов. - М.: Физматлит, 2015. - 282 с.
  9. Волков И.А., Игумнов Л.А., Коротких Ю.Г. Прикладная теория вязкопластичности: моногр. - Н. Новгород: Изд-во Нижегород. гос.университета, 2015. - 317 с.
  10. Волков И.А., Игумнов Л.А. Введение в континуальную механику поврежденной среды. - М.: Физматлит, 2017. - 299 с.
  11. Волков И.А., Казаков Д.А., Коротких Ю.Г. Экспериментально-теоретические определения параметров уравнений механики поврежденной среды при усталости и ползучести // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2012. - № 2. - С. 50-78.
  12. Chaboche J.L. Constitutive equation for cyclic plasticity and cyclic viscoplasticity // Inter. J. of Plasticity. - 1989. - Vol. 5. - No. 3. - Р. 247-302.
  13. Chaboche J.L. Thermodynamically based viscoplastic constitutive equations: theory versus experiment // ASME Winter Annual Meeting. - Atlanta, GA (USA). - 1991. - Р. 1-20.
  14. Chaboche J.L. Cyclic viscoplastic constitutive equations, parts I and II. // ASME J. of Applied Mechanics 60. - 1993. - Р. 813-828.
  15. Chaboche J.L., Rousselier G. On the plastic an viscoplastic constitutive equations // ASME J. of Pres. Vessel Techn. - 1983. - Vol. 105. - Р. 153-164.
  16. Chaboche J.-L. A review of some plasticity and viscoplasticity constitutive theories // Int. J. of Plasticity. - 2008. - Vol. 24. - Р. 1642-1692.
  17. Нелинейная механика материалов / Ж. Бессон, Ж. Каето, Ж.-Л. Шабоши, Т.С. Форест. - СПб.: Изд-во Политехн. ун-та, 2010. - 397 с.
  18. Бернард-Конноли, Бью Куок, Бирон. Усталость коррозионно-стойкой стали 304 при испытаниях в условиях многоступенчатой контролируемой деформации // Теор. основы инж. расчетов. - 1983. - № 3. - С. 47-53.
  19. Socie D. Multiaxial fatigue damage models // ASME. - 1988. - Vol. 3. - P. 9-21.
  20. Мэнсон С. Температурные напряжения и малоцикловая усталость. - М.: Машиностроение, 1974. - 344 с.
  21. Трощенко В.Т., Лебедев А.А., Стрижало В.А. Механическое поведение материалов при различных видах нагружения. - Киев: Логос, 2000. - 571 с.
  22. Savalle S., Caienatd G.Vicroanureage, micropropagation et endommage-mant // La Resherche Aerospatiale. - 1982. - Vol. 6. - P. 395-411.
  23. Бондарь В.С., Даншин В.В., Макаров Д.А. Математическое моделирование процессов деформирования и накопления повреждений при циклических нагружениях // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2014. - № 2. - С. 125-152.
  24. Бондарь В.С., Даншин В.В., Семенов П.В. Нелинейные процессы накопления повреждений при нестационарных циклических нагружениях // Проблемы прочности и пластичности. - 2012. - Вып. 75. - Ч. 2. - С. 96-104.
  25. Бондарь В.С., Даншин В.В. Пластичность. Пропорциональные и непропорциональные нагружения. - М.: Физматлит, 2008. - 176 с.
  26. Аверченков Е.А., Донченко А.С., Егоров В.И. О поведении материала поршня при термомеханическом нагружении // Повышение топливной экономичности и долговечности автомобильных двигателей. - М.: Изд-во МАМИ, 1983. - Вып. 5. - С. 59-68.
  27. Новожилов В.В., Рыбакина О.Г. О перспективах построения критерия прочности при сложном нагружении // Прочность при малом числе циклов нагружения. - М.: Наука, 1969. - С. 71-80.
  28. Новожилов В.В. О сложном нагружении и перспективах феноменологического подхода к исследованию микронапряжений // ПММ. - 1964. - Т. 28. - Вып. 3. - С. 393-400.
  29. Новожилов В.В., Кадашевич Ю.И. Микронапряжения в конструкционных материалах. - Л.: Машиностроение, 1990. - 224 с.
  30. Гусенков А.П. Прочность при изотермическом и неизотермическом малоцикловом нагружении. - М.: Наука, 1979. - 295 с.
  31. Гусенков А.П. Котов П.И. Малоцикловая усталость при неизотермическом нагружении. - М.: Машиностроение, 1983. - 240 с.

Supplementary files

There are no supplementary files to display.

Statistics

Views

Abstract: 13

PlumX


Copyright (c) 2021 Bondar V.S., Abashev D.R., Petrov V.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies