Application of the Acoustic Emission Technique to Studying the Damage Accumulation in a Functional Ceramic Coating

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article is devoted to an experimental study of the mechanisms of damage accumulation in functional ceramic coatings by using the acoustic emission technique. The study and description of the damage evolution in a functional coating makes it possible to determine the destruction moment of this material under operating conditions. Mechanical tensile tests were conducted on steel samples and steel samples coated with a ceramic coating on the universal electromechanical system Instron 5989 at room temperature. A continuous recording of acoustic emission signals was conducted using the AMSY-6 system and AE144A broadband sensors with a frequency range of 100-500 kHz. As an additional method of fixing the moment of destruction of a ceramic coating a system was used to register non-uniform fields of displacements and deformations based on the method of correlation of digital images. During the tests the acoustic emission system, the optical system, and the testing machine were synchronized. The recorded acoustic emission signals were filtered by a threshold value and were filtered using a band-pass digital filter. The frequencies of the spectral maximum are extracted using the fast Fourier transform. Diagrams of dependences of acoustic emission parameters (peak amplitudes, frequencies of the spectral maximum, energy parameter) versus time for all the samples were plotted. A comparison of the obtained graphs for the samples with and without coating is made. The ranges of amplitudes and frequencies that characterize the damage accumulation and destruction of the ceramic coating were determined. Thus, during these works, a technique was implemented to evaluate the behavior of the functional coating applied to the material. The effectiveness of applying the method of recording and analyzing acoustic emission signals to solve this problem was shown.

Full Text

Restricted Access

About the authors

E M Zubova

Perm National Research Polytechnic University

D S Lobanov

Perm National Research Polytechnic University

E M Strungar

Perm National Research Polytechnic University

V E Wildemann

Perm National Research Polytechnic University

Y B Lyamin

Ural Research Institute of Composite Materials

References

  1. Aero-thermo-chemical characterization of ultra-high-temperature ceramics for aerospace applications / R. Savino, L. Criscuolo, G.D. Di Martino, S. Mungiguerra // Journal of the European Ceramic Society. - 2018. - Vol. 38. - P. 2937-2953. doi: 10.1016/j.jeurceramsoc.2017.12.043
  2. Fahrenholtz W.G., Hilmas G.E. Ultra-high temperature ceramics: Materials for extreme environments // Scripta Materialia. - 2017. - Vol. 129. - P. 94-99. doi: 10.1016/j.scriptamat.2016.10.018
  3. Tang S., Hu C. Design, Preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review // Journal of Materials Science & Technology. - 2017. - Vol. 33. - P. 117-130. doi: 10.1016/j.jmst.2016.08.004
  4. Ultra-high temperature ceramic coating for carbon/carbon composites against ablation above 2000 K / Y. Zhang, H. Wang, T. Li, Y. Fu, J. Ren // Ceramics International. - 2018. - Vol. 44. - P. 3056-3063. doi: 10.1016/j.ceramint.2017.11.066
  5. Jayaraj B., Vishweswaraiah S., Desai V.H. Electrochemical impedance spectroscopy of thermal barrier coatings as a function of isothermal and cyclic thermal exposure // Surface and Coatings Technology. - 2014. - Vol. 177-178. - P. 140-158. DOI.org/10.1016/j.surfcoat.2003.08.092
  6. Jordan D.W., Faber K.T. X-ray residual stress analysis of a ceramic thermal barrier coating undergoing thermal cycling // Thin Solid Films. - 1993. - Vol. 235. - P. 137-141. doi: 10.1016/0040-6090(93)90256-O
  7. Wang X., Mumm D.R., Hutchinson J.W. Mechanisms controlling the durability of thermal barrier coatings // Progress in Materials Science. - 2001. - Vol. 46. - P. 505-553. DOI.org/10.1016/S0079-6425(00)00020-7
  8. Неразрушающий контроль: справочник: в 8 т. / под общ. ред. В.В. Клюева. Т 7: в 2 кн. Кн. 1. В.И. Иванов, И.Э. Власов. Метод акустической эмиссии; Кн. 2: Вибродиагностика / Ф.Я. Балицкий, А.В. Барков, Н.А. Баркова [и др.]. - М.: Машиностроение, 2005. - 829 с.
  9. Fu L., Khor K.A., Ng H.W. Non-destructive evaluation of plasma sprayed functionally graded thermal barrier coatings // Surface and Coatings Technology. - 2000. - Vol. 130. - P. 233-239. DOI.org/10.1016/S0257-8972(00)00700-3
  10. Kawasaki A., Watanabe R. Thermal fracture behavior of metal/ceramic functional graded materials // Engineering Fracture Mechanics. - 2002. - Vol. 69. - P. 1713-1728. DOI.org/10.1016/S0013-7944(02)00054-1
  11. Kucuk A., Berndt C.C., Senturk U. Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. II: Acoustic emission response // Materials Science and Engineering A. - 2000. - Vol. 284. - P. 41-50. DOI.org/10.1016/S0921-5093(00)00800-5.
  12. Lee K.-H., Park J.-H., Ye K.-H. Acoustic Emission Source Analysis of Vacuum Plasma Sprayed CoNiCrAlY Coatings // Journal of the Korean Physical Society. - 2006. - Vol. 48. - P. 1691-1695.
  13. Park J.H., Kimb J.S., Lee K.H. Acoustic emission characteristics for diagnosis of TBC damaged by high-temperature thermal fatigue // Journal of Materials Processing Technology. - 2007. - Vol. 197-198. - P. 537-541. DOI.org/10.1016/j.jmatprotec.2006.11.219
  14. Ma X.Q., Cho S., Takemoto M. Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests // Surface and Coatings Technology. - 2001. - Vol. 139. - P. 55-62. doi: 10.1016/S0257-8972(01)00995-1
  15. Acoustic emission evaluation of the fracture behavior of APS-TBCs subjecting to bondcoating oxidation / L. Yang, Y.C. Zhou, W.G. Mao, Q.X. Liu // Surface and Interface Analysis. - 2007. - Vol. 39. - P. 761-769. doi: 10.1002/sia.2586
  16. Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings / L. Yang, Y.C. Zhou, W.G. Mao, C. Lu // Applied Physics Letter. - 2008. - Vol. 93. doi: 10.1063/1.3043458 (accessed 12 July 2018).
  17. Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model / W. Zhu, L. Yang, J.W. Guo, Y.C. Zhou, C. Lu // International Journal of Plasticity. - 2015. - Vol. 64. - P. 76-87. doi: 10.1016/j.ijplas.2014.08.003
  18. Quantitative assessment of the surface crack density in thermal barrier coatings / L. Yang, Z.C. Zhong, Y.C. Zhou, C.S. Lu // Acta Mechanica Sinica. - 2014. - Vol. 30. - No. 2. - P. 167-174. doi: 10.1007/s10409-014-0019-8
  19. Acoustic emission assessment of interface cracking in thermal barrier coatings / L. Yang, Z.-C. Zhong, Y.-C. Zhou, W. Zhu // Acta Mechanica Sinica. - 2016. - Vol. 32. - No. 2. - P. 342-348. doi: 10.1007/s10409-015-0514-6
  20. Yang L., Zhou Y.-C., Lu С. Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: An acoustic emission method // Acta Material. - 2011. - Vol. 59. - P. 6519-6529. doi: 10.1016/j.actamat.2011.06.018
  21. Effects of the laser treatment and thermal oxidation behavior of CoNiCrAlY/ZrO2-8 wt%Y2O3 thermal barrier coating / J.H. Park, J.S. Kim, K.H. Lee, Y.S. Song, M.C. Kang // Journal of Materials Processing Technology. - 2008. - Vol. 201. - P. 331-335. doi: 10.1016/j.jmatprotec.2007.11.192
  22. Quantitative assessment of the surface crack density in thermal barrier coatings / L. Yang, Z.C. Zhong, Y.C. Zhou, C.S. Lu // Acta Mechanica Sinica. - 2014. - Vol. 30. - No. 2. - P. 167-174. doi: 10.1007/s10409-014-0019-8
  23. Appleby M.P., Zhua D., Morscher. G.N. Mechanical properties and real-time damage evaluations of environmental barrier coated SiC/SiC CMCs subjected to tensile loading under thermal gradients // Surface & Coatings Technology. - 2015. - Vol. 284. - P. 318-326.
  24. Мозгалевский А.В., Гаскаров Д.В. Техническая диагностика. - М.: Высшая школа, 1975. - 207 с.
  25. Коллакот Р.А. Диагностика повреждений: пер. с англ. / под ред. П.Г. Бабаевского. - М.: Мир, 1989. - 516 с.
  26. Владимиров В.И., Романов А.Е. Дисклинации в кристаллах. - Л.: Наука, 1986. - 219 с.
  27. Коттрелл А.Х. Дислокации и пластическое течение кристаллов. - М.: Металлургиздат, 1958. - 158 с.
  28. Разрушение твердых полимеров / под. ред. Б. Роузена; пер. с англ. - М., 1971. - 528 с.
  29. AMSY-6 Handbook. Developed and manufactured by Vallen Systeme GmbH. - 2012.
  30. Wildemann V.E., Spaskova E.M., Shilova A.I. Research of the damage and failure processes of composite materials based on acoustic emission monitoring and method of digital image correlation // Solid State Phenomena. - 2016. - Vol. 243. - P. 163-170. doi: 10.4028/ href='www.scientific.net/SSP.243.163' target='_blank'>www.scientific.net/SSP.243.163.
  31. Шилова А.И. Метод регистрации сигналов акустической эмиссии применительно к исследованию процессов разрушения конструкционных материалов: учеб. пособие / под ред. В.Э. Вильдемана. - Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2015. - 56 с.
  32. Экспериментальное исследование влияния высокотемпературной обработки тканого наполнителя на прочностные свойства углеродных композитов / А.И. Шилова, Д.С. Лобанов, В.Э. Вильдеман, Ю.Б. Лямин // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2014. - № 4. - С. 221-239. doi: 10.15593/perm.mech/2014.4.09
  33. Исследования механизмов разрушения углеродных композиционных материалов на основе механических испытаний с регистрацией сигналов акустической эмиссии / А.И. Шилова, В.Э. Вильдеман, Д.С. Лобанов, Ю.Б. Лямин // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2013. - № 4. - С. 169-179.
  34. Оценка работоспособности внедренных в композитный материал волоконно-оптических датчиков с использованием данных цифровой оптической видеосистемы анализа деформаций / В.Э. Вильдеман, Е.М. Струнгарь, Д.С. Лобанов, А.А. Воронков // Дефектоскопия. - 2018. - № 1. - C. 65-71.
  35. Sutton M.A., Orteu J.-J., Schreier H. Image Correlation for Shape, Motion and Deformation Measurements. - University of South Carolina, Columbia, SC, USA, 2009. - 364 p.
  36. Экспериментальное исследование процессов разрушения полунатурных керамических элементов зубных протезов методом регистрации сигналов акустической эмиссии / А.Г. Рогожников, В.Э. Вильдеман, А.В. Биккулова, Е.М. Зубова, Г.И. Рогожников, О.А. Шулятникова // Российский журнал биомеханики. - 2018. - Т. 22, № 2. - С. 230-240. doi: 10.15593/RZhBiomech/2018.2.07
  37. Третьякова Т.В., Зубова Е.М. Оценка влияния дополнительного вибрационного воздействия на закономерности прерывистой текучести на примере Al-Mg сплава и углеродистой стали // Механика, ресурс и диагностика материалов и конструкций: сб. тез. - 2018. - С. 406-407.

Statistics

Views

Abstract: 37

PlumX


Copyright (c) 2021 Zubova E.M., Lobanov D.S., Strungar E.M., Wildemann V.E., Lyamin Y.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies