Investigation of the behavior of cylindrical bodies under conditions of joint tension and torsion under disproportionate loading

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The work is devoted to studying the behavior of cylindrical bodies of structural steels in the conditions of joint tension and torsion under complex loading. The study is aimed at studying and subsequent modernization of the method of increasing the fatigue life of cylindrical products. It consists in creating the product favorable axial compressive residual stresses in the near-surface area due to the successive elastoplastic deformation, first by tension, and then, during fixation of the longitudinal deformation obtained by tension, by torsion. A mathematical model of elastoplastic deformation by joint tension and torsion of a homogeneous cylindrical body, which allows to calculate the distribution of residual stresses created in the body, is constructed. To check the adequacy of the obtained solution and determine the required material parameters of the model, tests were performed on cylindrical samples of steel 15Cr2MnMoV. The necessary studies were carried out at the Center for Experimental Mechanics of Perm National Research Polytechnic University using the Instron 8850 universal two-axis servo-hydraulic test system, which allows for loading by joint tension and torsion. According to the results of the experiments, graphs of the longitudinal force and torque versus the twist angle were obtained with the deformation sequences studied. By comparing the experimental and calculated dependencies, the adequacy of the developed model was confirmed and the range of deformation modes was established, in which it reflects the behavior of the material with an accuracy acceptable for practice. Instead of the existing method of deformation, which includes a single torsion of a product in a state of tension, a new method is considered, consisting in reversional (alternating) torsion of a cylindrical body in a state of tension. Deformation by sequential tension and reversional torsion allows to provide a favorable (from the standpoint of increasing fatigue life) distribution of residual axial stresses over the cross section of the body with minimum values of residual shear stresses.

Full Text

Restricted Access

About the authors

A A Kryukov

Perm National Research Polytechnic University

References

  1. Терентьев В.Ф., Кораблева С.А. Усталость металлов. - М.: Наука, 2015. - 484 с.
  2. Иванова В.С., Терентьев В.Ф. Природа усталости металлов. - М.: Металлургия, 1975. - 456 с.
  3. Серенсен С.В. Усталость материалов и элементов конструкций: избр. тр.: в 3 т. - Киев: Наук. думка, 1985. - Т.2. - 256 с.
  4. Suresh S. Fatigue of materials. - Cambridge University Press: New York, 1998. - 679 p.
  5. Павлов В.Ф., Кирпичев В.А., Вакулюк В.С. Прогнозирование сопротивления усталости поверхностно упрочненных деталей по остаточным напряжениям / Самар. науч. центр РАН. - Самара, 2012. - 125 с.
  6. Радченко В.П., Саушкин М.Н. Феноменологический метод расчета остаточных напряжений и пластических деформаций в полом поверхностно упрочненном цилиндрическом образце // Прикладная математика и механика. - 2013. - Т. 77, № 1. - С. 143-152.
  7. Радченко В.П., Кирпичев В.А., Лунин В.В. Оценка влияния поверхностного упрочнения на предел выносливости деталей различного диаметра в условиях концентрации напряжений // Вестн. Самар. гос. техн. ун-та. Сер. Технические науки. - 2015. - № 1 (45). - С. 168 - 177.
  8. Оценка влияния гидродробеструйной обработки на многоцикловую усталость цилиндрических деталей из сплава Д16Т по первоначальным деформациям образца-свидетеля / В.С. Вакулюк, В.П. Сазанов, В.Ф. Павлов, В.К. Шадрин // Вестн. Самар. гос. техн. ун-та. Сер. Технические науки. - 2014. - № 2 (42). - С. 87-93.
  9. Радченко В.П., Куров А.Ю. Влияние анизотропии поверхностного пластического упрочнения на формирование остаточных напряжений в цилиндрических деталях с надрезами полукруглого профиля // Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. - 2016. - Т. 20, № 4. - С. 675-690. doi: 10.14498/vsgtu1513
  10. Круцило В.Г. Исследование влияния остаточных напряжений и деформационного упрочнения в поверхностном слое деталей на усталостную прочность // Вестн. Самар. гос. техн. ун-та. Сер. Технические науки. - 2006. - № 41. - С. 127-130.
  11. Dai K., Shaw L. Analysis of fatigue resistance improvements via surface severe plastic deformation // International Journal of Fatigue. - 2008. - Vol. 30. - No. 8. - P. 1398-1408. doi: 10.1016/j.ijfatigue.2007.10.010
  12. Поляк М.С. Технология упрочнения. Технологические методы упрочнения: в 2 т. - М.: Машиностроение, 1995. - Т. 2. - 688 с.
  13. Смелянский В.М. Механика упрочнения деталей поверхностным пластическим деформированием. - М.: Машиностроение, 2002. - 299 с.
  14. Крюков А.А. Технология упрочнения длинномерных цилиндрических изделий совместным растяжением и реверсивным кручением // Металлообработка. - 2015. - № 3(87). - С. 11-17.
  15. Increasing Corrosion-Fatigue Strength of Long Cylindrical Products as a Result of Preliminary Strengthening by Joint Stretching and Twisting / A.A. Kryukov, V.E. Kalugin, L.D. Sirotenko // Research Journal of Pharmaceutical, Biological and Chemical Sciences. - 2016. - Vol. 7. - Iss. 3. - P. 2434-2447. - URL: http://rjpbcs.com/pdf/2016_7(3)/[298].pdf (accessed: 28 January 2019).
  16. Технология восстановления прямолинейности и упрочнения насосных штанг / Н.Н. Вассерман, В.В. Семенов, В.Е. Калугин, Н.П. Надымов // Наука производству. - М., 2000. - № 5. - С. 49-50.
  17. Надымов А.Н., Столбов В.Ю., Трусов П.В. Математическое моделирование процесса восстановления насосных штанг // Сибирский журн. индустр. математики. - 2002. - Т. 5, № 1 (9). - С. 120-126.
  18. Стружанов В.В., Просвиряков Е.Ю. Растяжение с кручением. Сообщ. 1. Свойства материала // Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. - 2008. - № 1 (16). - С. 36-44. doi: 10.14498/vsgtu570
  19. Стружанов В.В., Привалова В.В. Численный расчет предельных значений параметров управления в задаче о растяжении с кручением специального образца в одной стержневой системе // Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. - 2011. - № 2 (23). - С. 46-52. doi: 10.14498/vsgtu908
  20. Вильдеман В.Э., Третьяков М.П. Испытания материалов с построением полных диаграмм деформирования // Проблемы машиностроения и надежности машин. - 2013. - № 2. - С. 93-98.
  21. Tretyakov M.P., Vildeman V.E. Tests in tension-torsion conditions with descending sections of strain curve construction // Frattura ed Integrita Strutturale. - 2013. - Vol. 24. - Р. 96-101.
  22. Закономерности развития неоднородных полей при закритическом деформировании стальных образцов в условиях растяжения / В.Э. Вильдеман, Е.В. Ломакин, Т.В. Третьякова, М.П. Третьяков // Изв. РАН. Механика твердого тела. - 2016. - № 5. - С. 132-139.
  23. Закритическое деформирование и разрушение тел с концентраторами в условиях плоского напряженного состояния / В.Э. Вильдеман, Е.В. Ломакин, Т.В. Третьякова, М.П. Третьяков // Известия РАН. Механика твердого тела. - 2017. - № 5. - C. 22-29.
  24. Моделирование процессов деформирования и локализации пластических деформаций при кручении-растяжении тел вращения / В.Г. Баженов [и др.] // Прикладная математика и механика. - 2008 - № 2 (72) - С. 342-350.
  25. Баженов В.Г., Жегалов Д.В., Павленкова Е.В. Численное и экспериментальное исследование упругопластических процессов растяжения-кручения осесимметричных тел при больших деформациях // Изв. РАН. Механика твердого тела. - 2011. - № 2. - С. 57-66.
  26. Численное и экспериментальное исследование упругопластических процессов растяжения-кручения цилиндрических образцов из стали 09Г2С при больших деформациях / В.Г. Баженов [и др.] // Фундаментальные и прикладные проблемы техники и технологии. - 2017. - № 4-2 (324). - С. 76-82.
  27. Экспериментальное и теоретическое исследование больших деформаций цилиндрических образцов из стали 09Г2С с концентраторами напряжений при нагружении растяжением-кручением до разрушения / В.Г. Баженов [и др.] // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2018. - № 4. - С. 69-81. doi: 10.15593/perm.mech/2018.4.06
  28. Коновалов А.В. Кручение цилиндрического стержня и трубы из упругопластического материала с большими пластическими деформациями // Изв. РАН. Механика твердого тела. - 2001. - № 3. - С. 102-111.
  29. A new multiaxial fatigue damage model for various metallic materials under the combination of tension and torsion loadings / Jing Li [et al.] // International Journal of Fatigue. - 2009. - No. 31. - P. 776-781.
  30. Starzynski Grzegorz. Modeling and experimental verification of simultaneous tension and torsion in a cylindrical element with a surface layer // International Journal of Fatigue. - 2010. - No. 32. - P. 1255-1264.
  31. Akhtar S. Khan, Xu Chen, Mohammad Abdel-Karim. Cyclic multiaxial and shear finite deformation response of OFHC: Part I, experimental results // International Journal of Plasticity. - 2007. - No. 23. - P. 1285-1306.
  32. Chen X., Jiao R. Modified kinematic hardening rule for multiaxial ratcheting prediction // International Journal of Plasticity. - 2004. - No. 20. - P. 871-898.
  33. Nouailhas Dominique, Cailletaud Georges. Tension-torsion behavior of single-crystal superalloys: experiment and finite element analysis // International Journal of Plasticity. - 1995. - Vol. 11. - No. 4. - P. 451-470.
  34. Mechanical and microstructural investigations of an austenitic stainless steel under non-proportional loadings in tension-torsion-internal and external pressure / L. Bocher et al. // International Journal of Plasticity. - 2001. - No. 17. - P. 1491-1530.
  35. On the performance of kinematic hardening rules in prediction a class of biaxial ratcheting histories / E. Corona [et al.] // International Journal of Plasticity. - 1996. - Vol. 12. - No. 1. - P. 117-145.
  36. Ratcheting under tension-torsion loadings: experiments and modeling / L. Portier et al. // International Journal of Plasticity. - 2000. - No. 16. - P. 303-335.
  37. Takahashi H., Fujiwara K., Nakagawa T. Multiple-slip work-hardening model in crystals with application to torsion-tension behaviors of aluminium tubes // International Journal of Plasticity. - 1998. - Vol. 14. - No. 6. - P. 489-509.
  38. The influence of constant axial compression pre-stress on the fatigue failure of torsion loaded tube springs / Vinko Močilnik [et al.] // Engineering Fracture Mechanics. - 2010. - No. 77. - P. 3132-3142.
  39. Xu Chen, Rong Jiao, Kwang Soo Kim. On the Ohno-Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel // International Journal of Plasticity. - 2005. - No. 21. - P. 161-184.
  40. Исследование закономерностей упругопластического деформирования стали 15Х2ГМФ при сложном напряженном состоянии / Н.Н. Вассерман, В.Э. Вильдеман, А.А. Крюков, М.П. Третьяков // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2010. - № 2. - С. 34-47.
  41. Исследование поведения конструкционной стали при простых видах нагружения / Н.Н. Вассерман, В.Е. Калугин, А.А. Крюков, М.П. Третьяков // Вестник ПНИПУ. Машиностроение и материаловедение. - 2012. - Т. 14, № 1. - С. 41-50.
  42. Крюков А.А., Калугин В.Е., Вассерман Н.Н. Моделирование упругопластического деформирования конструкционной стали при сложном напряженном состоянии // Вестн. Самар. гос. техн. ун-та. Сер. Технические науки. - 2011. - № 3 (31). - С. 122-128.
  43. Малинин Н.Н. Прикладная теория пластичности и ползучести. - М.: Машиностроение, 1975. - 400 с.

Statistics

Views

Abstract: 19

PlumX


Copyright (c) 2021 Kryukov A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies