Development of the Digital Image Correlation Method to Study Deformation and Fracture Processes of Structural Materials

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A number of problems related to the digital image correlation method from the standpoint of both the hardware and software development and testing, as well as solving problems in the field of fatigue fracture mechanics are described. Testing of the developed computer stereo vision system was carried out using a series of stereo pairs reflecting the change in the location of the object in space as well as plane and out-of-plane deformations. It is shown that the error in determining spatial coordinates does not exceed 0.75 units, while the error in computing the strain tensor components in case of a system with a single camera is two orders of magnitude larger than that at using the stereo machine vision system. An algorithm for automatic crack detection on optical images and calculating its tip coordinates was proposed and tested. It is shown that when the frame size is 2000×1000 pixels the coordinates of the crack tip might be determined with an average error of about 56 pixels, while the average error of the crack area determination does not exceed 1.93%. A modified incremental algorithm for calculating displacements on a series of stereo pairs is proposed, which allows one to estimate large magnitude displacements during serial processing of images. An algorithm for measuring the J-integral using the digital image correlation method has been developed. It is shown that the deviation of the calculated J-integral values from the model ones is on average 1.75 %. A quantitative characterization of the fatigue crack growth process in metal alloys was carried out using the technique based on the digital image correlation (in terms of fracture mechanics) including the calculation of the fatigue crack growth rate da / dN , maximum strain (εmax) and effective cycle asymmetry ( R eff).

Full Text

Restricted Access

About the authors

P S Lyubutin

Institute of Strength Physics and Materials Science

S V Panin

Institute of Strength Physics and Materials Science; National Research Tomsk Polytechnic University

V V Titkov

Institute of Strength Physics and Materials Science

A V Eremin

Institute of Strength Physics and Materials Science

R Sunder

National Research Tomsk Polytechnic University

References

  1. Методы компьютерной обработки изображений. - 2-е изд. / М.В. Гашников [и др.]; ред. В.А. Сойфер. - М.: Физматлит, 2003. - 784 с.
  2. Barron J.L., Fleet D.J., Beauchemin S.S. Performance of optical flow techniques // International Journal of Computer Vision. - 1994. - Vol. 12. - No. 1. - P. 43-77.
  3. Beauchemin S.S., Barron J.L. The computation of optical flow // ACM Computing Surveys. - 1995. - Vol. 27. - No. 3. - P. 433-466.
  4. Horn B.K.P., Schunck B.G. Determining optical flow // Artificial Intelligence. - 1981. - Vol. 17. - No. 1-3. - P. 185-203.
  5. Lucas B.D., Kanade T. An iterative image registration technique with an application to stereo vision // Proceedings of Imaging Understanding Workshop. - 1981. - P. 121-130.
  6. Lucas B.D. Generalized image matching by the method of differences. - Carnegie Mellon University, 1984. - 167 p.
  7. Fennema C.L., Thompson W.B. Velocity determination in scenes containing several moving objects // Computer Graphics and Image Processing. - 1979. - Vol. 9. - No. 4. - P. 301-315.
  8. Fleet D.J., Jepson A.D., Jenkin M.R.M. Phase-based disparity measurement // CVGIP: Image Understanding. - 1991. - Vol. 53. - No. 2. - P. 198-210.
  9. Adelson E.H., Bergen J.R. Spatiotemporal energy models for the perception of motion // Journal of the Optical Society of America A. - 1985. - Vol. 2. - No. 2. - P. 284.
  10. Heeger D.J. Optical flow using spatiotemporal filters // International Journal of Computer Vision. - 1988. - Vol. 1. - No. 4. - P. 279-302.
  11. Watson A.B., Ahumada A.J. A look at motion in the frequency domain. - 1983.
  12. Fleet D.J. The early processing of spatio-temporal visual information: thesis (M.Sc.). - University of Toronto, 1984. - 136 p.
  13. Schreier H., Orteu J.-J., Sutton M.A. Image correlation for shape, motion and deformation measurements. - Boston, MA: Springer US, 2009. - 321 p.
  14. Обзор блочных методов оценки движения в цифровых видеосигналах / С.В. Гришин [и др.] // Программные системы и инструменты: тем. сб. - М.: Изд-во фак. ВМиК МГУ, 2008. - С. 50-62.
  15. Zhu S., Ma K.K. A new diamond search algorithm for fast block-matching motion estimation // IEEE Transactions on Image Processing. - 2000. - Vol. 9. - Nо. 2. - P. 287-290.
  16. Li W., Salari E. Successive elimination algorithm for motion estimation // IEEE Transactions on Image Processing. - 1995. - Vol. 4. - Nо. 1. - P. 105-107.
  17. Schreier H.W. Systematic errors in digital image correlation caused by intensity interpolation // Optical Engineering. - 2000. - Vol. 39. - Nо. 11. - P. 2915-2921.
  18. Wu Q.X. A correlation-relaxation-labeling framework for computing optical flow-template matching from a new perspective // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 1995. - Vol. 17. - Nо. 9. - P. 843-853.
  19. Black M.J., Anandan P. The robust estimation of multiple motions: parametric and piecewise-smooth flow fields // Computer Vision and Image Understanding. - 1996. - Vol. 63. - Nо. 1. - P. 75-104.
  20. Воскобойников Ю.Е., Гочаков А.В. Сравнительный анализ двух классов алгоритмов фильтрации изображений // Автометрия. - 2011. - Т. 47, № 1. - С. 17-29.
  21. Воскобойников Ю.Е., Гочаков А.В. Построение алгоритмов вейвлет-фильтрации с двухпараметрическими пороговыми функциями // Автометрия. - 2012. - Т. 48, № 1. - С. 12-22.
  22. Otte M., Nagel H.-H. Estimation of optical flow based on higher-order spatiotemporal derivatives in interlaced and non-interlaced image sequences // Artificial Intelligence. - 1995. - Vol. 78. - Nо. 1-2. - P. 5-43.
  23. Nagel H.-H. Displacement vectors derived from second-order intensity variations in image sequences // Computer Vision, Graphics, and Image Processing. - 1983. - Vol. 21. - Nо. 1. - P. 85-117.
  24. Nagel H.-H., Enkelmann W. An Investigation of smoothness constraints for the estimation of displacement vector fields from image sequences // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 1986. - Vol. PAMI-8. - Nо. 5. - P. 565-593.
  25. Wang C.-M., Fan K.-C., Wang C.-T. Estimating Optical Flow by Integrating Multi-Frame Information // Journal of Information Science and Engineering. - 2008. - Vol. 24. - Nо. 6. - P. 1719-1731.
  26. Irani M. Multi-frame optical flow estimation using subspace constraints // Proceedings of the Seventh IEEE International Conference on Computer Vision. - IEEE, 1999. - Vol. 1. - P. 626-633.
  27. Gao W., Kemao Q. Parallel computing in experimental mechanics and optical measurement: A review // Optics and Lasers in Engineering. - 2012. - Vol. 50. - P. 608-617.
  28. High accuracy digital image correlation powered by GPU-based parallel computing / L. Zhang [et al.] // Optics and Lasers in Engineering. - 2015. - Vol. 69. - P. 7-12.
  29. Shao X., Dai X., He X. Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation // Optics and Lasers in Engineering. - 2015. - Vol. 71. - P. 9-19.
  30. A multi-resolution approach for massively-parallel hardware-friendly optical flow estimation / F. Barranco [et al.] // Journal of Visual Communication and Image Representation. - 2012. - Vol. 23. - Nо. 8. - P. 1272-1283.
  31. Marzat J., Dumortier Y., Ducrot A. Real-time dense and accurate parallel optical flow using CUDA // 7th International Conference WSCG. - 2009. - P. 105-111.
  32. SimpleFlow: A Non-iterative, Sublinear Optical Flow Algorithm / M. Tao [et al.] // Computer Graphics Forum. - 2012. - Vol. 31, 2pt1. - P. 345-353.
  33. Rav-Acha A., Peleg S. Lucas-Kanade without iterative warping // 2006 International Conference on Image Processing. - IEEE, 2006. - P. 1097-1100.
  34. Braspenning R.A., Haan G. de True-motion estimation using feature correspondences. Eds. S. Panchanathan, B. Vasudev. - 2004. - P. 396.
  35. True-motion estimation with 3-D recursive search block matching / G. de Haan [et al.] // IEEE Transactions on Circuits and Systems for Video Technology. - 1993. - Vol. 3. - Nо. 5. - P. 368-379, 388.
  36. Optimization of hierarchical 3DRS motion estimators for picture rate conversion / A. Heinrich [et al.] // IEEE Journal of Selected Topics in Signal Processing. - 2011. - Vol. 5. - Nо. 2. - P. 262-274.
  37. Ahn T.G., Moon Y.H., Kim J.H. Fast full-search motion estimation based on multilevel successive elimination algorithm // IEEE Transactions on Circuits and Systems for Video Technology. - 2004. - Vol. 14. - Nо. 11. - P. 1265-1269.
  38. Lopes F., Ghanbari M. Hierarchical motion estimation with spatial transforms // Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101). - IEEE, 2000. - Vol. 2. - P. 558-561.
  39. Application of an optimized digital correlation method to planar deformation analysis / M. Sutton [et al.] // Image and Vision Computing. - 1986. - Vol. 4. - Nо. 3. - P. 143-150.
  40. Applications of digital-image correlation techniques to experimental mechanics / T.C. Chu [et al.] // Experimental Mechanics. - 1985. - Vol. 25. - Nо. 3. - P. 232-244.
  41. Determination of displacements using an improved digital correlation method / M. Sutton [et al.] // Image and Vision Computing. - 1983. - Vol. 1. - Nо. 3. - P. 133-139.
  42. Digital image correlation using Newton-Raphson method of partial differential correction / H.A. Bruck [et al.] // Experimental Mechanics. - 1989. - Vol. 29. - Nо. 3. - P. 261-267.
  43. Advances in two-dimensional and three-dimensional computer vision / M.A. Sutton [et al.] // Photomechanics. - Springer Berlin Heidelberg, 2000. - P. 323-372.
  44. Hild F., Roux S. Digital image correlation: from displacement measurement to identification of elastic properties - a review // Strain. - 2006. - Vol. 42. - Nо. 2. - P. 69-80.
  45. Besnard G., Hild F., Roux S. “Finite-element” displacement fields analysis from digital images: application to Portevin-Le Châtelier bands // Experimental Mechanics. - 2006. - Vol. 46. - Nо. 6. - P. 789-803.
  46. Roux S., Hild F. Stress intensity factor measurements from digital image correlation: Post-processing and integrated approaches // International Journal of Fracture. - 2006. - Vol. 140. - Nо. 1-4. - P. 141-157.
  47. Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation / F. Hild [et al.] // Applied Optics. - 2002. - Vol. 41. - Nо. 32. - P. 6815.
  48. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review / B. Pan [et al.] // Measurement Science and Technology. - 2009. - Vol. 20. - Nо. 6. - P. 062001.
  49. Performance of sub-pixel registration algorithms in digital image correlation / P. Bing [et al.] // Measurement Science and Technology. - 2006. - Vol. 17. - Nо. 6. - P. 1615-1621.
  50. Study on subset size selection in digital image correlation for speckle patterns / B. Pan [et al.] // Optics Express. - 2008. - Vol. 16. - Nо. 10. - P. 7037.
  51. Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements / B. Pan [et al.] // Optics and Lasers in Engineering. - 2009. - Vol. 47. - Nо. 7-8. - P. 865-874.
  52. Pan B. Recent progress in digital image correlation // Experimental Mechanics. - 2011. - Vol. 51. - Nо. 7. - P. 1223-1235.
  53. Механика материалов. Методы и средства экспериментальных исследований / В.Э. Вильдеман [и др.]. - Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2011. - 164 с.
  54. Investigation of fatigue crack closure using multiscale image correlation experiments / J. Carroll [et al.] // Engineering Fracture Mechanics. - 2009. - Vol. 76. - Nо. 15. - P. 2384-2398.
  55. Mathieu F., Hild F., Roux S. Identification of a crack propagation law by digital image correlation // International Journal of Fatigue. - 2012. - Vol. 36. - Nо. 1. - P. 146-154.
  56. High resolution digital image correlation measurements of strain accumulation in fatigue crack growth / J.D. Carroll [et al.] // International Journal of Fatigue. - 2013.
  57. Zhang R., He L. Measurement of mixed-mode stress intensity factors using digital image correlation method // Optics and Lasers in Engineering. - 2012.
  58. An approach to calculate the J-integral by digital image correlation displacement field measurement / T.H. Becker [et al.] // Fatigue and Fracture of Engineering Materials and Structures. - 2012.
  59. Analysis of standard fracture toughness test based on digital image correlation data / I. Jandejsek [et al.] // Engineering Fracture Mechanics. - 2017.
  60. A J-integral approach using digital image correlation for evaluating stress intensity factors in fatigue cracks with closure effects / G.L.G. Gonzáles [et al.] // Theoretical and Applied Fracture Mechanics. - 2017.
  61. Yoneyama S., Morimoto Y., Takashi M. Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation // Strain. - 2006.
  62. Investigation of thermal effects on fatigue crack closure using multiscale digital image correlation experiments / M.C. Casperson [et al.] // International Journal of Fatigue. - 2014.
  63. Панин С.В., Сырямкин В.И., Любутин П.С. Оценка деформации твердых тел по изображениям поверхности // Автометрия. - 2005. - Т. 41, № 2. - С. 44-58.
  64. Giachetti, A. Matching techniques to compute image motion // Image and Vision Computing. - 2000. - Vol. 18. - Nо. 3. - P. 247-260.
  65. Tong W. An evaluation of digital image correlation criteria for strain mapping applications // Strain. - 2005. - Vol. 41. - Nо. 4. - P. 167-175.
  66. Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation / B. Pan [et al.] // Optical Engineering. - 2007. - Vol. 46, N 3. - P. 33601-33610.
  67. Cofaru C., Philips W., Van Paepegem W. Improved Newton-Raphson digital image correlation method for full-field displacement and strain calculation // Applied Optics. - 2010. - Vol. 49. - Nо. 33. - P. 6472.
  68. Fundamental role of crystal structure curvature in plasticity and strength of solids / V.E. Panin [et al.] // Physical Mesomechanics. - 2015. - Vol. 18. - Nо. 2. - P. 89-99.
  69. Synergy of crack closure, near-tip residual stress and crack-tip blunting in crack growth under periodic overloads - A fractographic study / R. Sunder [et al.] // International Journal of Fatigue. - 2016. - Vol. 93. - P. 18-29.
  70. Song K.Y., Petrou M., Kittler J. Texture crack detection // Machine Vision and Applications. - 1995. - Vol. 8. - Nо. 1. - P. 63-75.
  71. Kirschke K.R., Velinsky S.A. Histogram based approach for automated pavement crack sensing // Journal of Transportation Engineering. - 1992. - Vol. 118. - Nо. 5. - P. 700-710.
  72. CrackTree: Automatic crack detection from pavement images / Q. Zou [et al.] // Pattern Recognition Letters. - 2012. - Vol. 33. - Nо. 3. - P. 227-238.
  73. Sun L., Kamaliardakani M., Zhang Y. Weighted neighborhood pixels segmentation method for automated detection of cracks on pavement surface images // Journal of Computing in Civil Engineering. - 2016. - Vol. 30. - Nо. 2. - P. 04015021.
  74. Yamaguchi T., Hashimoto S. Fast crack detection method for large-size concrete surface images using percolation-based image processing // Machine Vision and Applications. - 2010. - Vol. 21. - Nо. 5. - P. 797-809.
  75. Iyer S., Sinha S.K. A robust approach for automatic detection and segmentation of cracks in underground pipeline images // Image and Vision Computing. - 2005. - Vol. 23. - Nо. 10. - P. 921-933.
  76. Lins R.G., Givigi S.N. Automatic crack detection and measurement based on image analysis // IEEE Transactions on Instrumentation and Measurement. - 2016. - Vol. 65. - Nо. 3. - P. 583-590.
  77. A database and evaluation methodology for optical flow / S. Baker [et al.] // International Journal of Computer Vision. - 2011. - Vol. 92. - Nо. 1. - P. 1-31.
  78. Панин С.В., Чемезов В.О., Любутин П.С. Комплексный алгоритм вычисления оптического потока с использованием взвешенной меры подобия // Вычислительные технологии. - 2017. - Т. 22, № 4. - С. 80-94.
  79. Gonzalez R.C., Woods R.E. Digital image processing, 3rd Edition. - Prentice Hall, 2008. - 954 p.
  80. Glantz R., Kropatsch W.G. Skeletons in the framework of graph pyramids // Visual Form 2001. Lecture Notes in Computer Science. Eds. C. Arcelli, L.P. Cordella, G.S. di Baja. - Springer Berlin Heidelberg, 2001. - P. 186-195.
  81. Панин С.В., Титков В.В., Любутин П.С. Выбор параметров алгоритма трехмерного рекурсивного поиска при построении поля векторов перемещений с использованием иерархического подхода // Автометрия. - 2015. - Т. 51, № 2. - С. 27-37.
  82. Nowell D., De Matos P.F.P. Application of digital image correlation to the investigation of crack closure following overloads // Procedia Engineering. - 2010.
  83. Yusof F., Lopez-Crespo P., Withers P.J. Effect of overload on crack closure in thick and thin specimens via digital image correlation // International Journal of Fatigue. - 2013. - Vol. 56. - P. 17-24.
  84. Lu Z., Liu Y. Small time scale fatigue crack growth analysis // International Journal of Fatigue. - 2010.
  85. Toribio J., Kharin V. Finite-deformation analysis of the crack-tip fields under cyclic loading // International Journal of Solids and Structures. - 2009.
  86. Near-tip strain evolution under cyclic loading: In situ experimental observation and numerical modelling / J. Tong [et al.] // International Journal of Fatigue. - 2015.
  87. Zhang W., Liu Y. Plastic zone size estimation under cyclic loadings using in situ optical microscopy fatigue testing // Fatigue and Fracture of Engineering Materials and Structures. - 2011.
  88. Черепанов Г.П. О распространении трещин в сплошной среде // Прикладная математика и механика. - 1967. - Т. 31, № 3. - С. 476-488.
  89. Rice J.R. A path independent integral and the approximate analysis of strain concentration by notches and cracks // Journal of Applied Mechanics. - 1968.
  90. J-Integral calculation by finite element processing of measured full-field surface displacements / S.M. Barhli [et al.] // Experimental Mechanics. - 2017. - Vol. 57. - Nо. 6. - P. 997-1009.
  91. McNeill S.R., Peters W.H., Sutton M.A. Estimation of stress intensity factor by digital image correlation // Engineering Fracture Mechanics. - 1987. - Vol. 28. - Nо. 1. - P. 101-112.
  92. Lorenzino P., Beretta G., Navarro A. Application of digital image correlation (DIC) in resonance machines for measuring fatigue crack growth // Frattura ed Integrita Strutturale. - 2014.
  93. Hos Y., Vormwald M., Freire J.L.F. Using digital image correlation to determine mixed mode stress intensity factors in fatigue cracks // Proceedings of COTEQ 2015. - 2015.
  94. Matos P.F.P. de, Nowell D. Experimental and numerical investigation of thickness effects in plasticity-induced fatigue crack closure // International Journal of Fatigue. - 2009.
  95. Estimation of mixed-mode stress intensity factors using digital image correlation and an interaction integral / J. Réthoré [et al.] // International Journal of Fracture. - 2005.
  96. Evaluating J-integral from displacement fields measured by digital image correlation / S. Yoneyama [et al.] // Strain. - 2014.
  97. Панин С.В., Титков В.В., Любутин П.С. Инкрементный подход к определению перемещений фрагментов изображений при построении векторных полей // Автометрия. - 2014. - Т. 50, № 2. - С. 39-49.
  98. Панин С.В., Титков В.В., Любутин П.С. Сглаживание векторных полей с использованием поверхности Безье при оценке деформации методом корреляции цифровых изображений // Автометрия. - 2014. - Т. 50, № 1. - С. 74-81.
  99. Панин С.В., Титков В.В., Любутин П.С. Исследование эффективности алгоритмов фильтрации векторных полей при оценке деформации материалов методом корреляции цифровых изображений // Автометрия. - 2013. - Т. 49, № 2. - С. 57-67.
  100. Любутин П.С., Панин С.В. Измерение деформации на мезоуровне путем анализа оптических изображений поверхности нагруженных твердых тел // Прикладная механика и техническая физика. - 2006. - Т. 47, № 6. - С. 158-164.
  101. Березин И.С., Жидков Н.П. Методы вычислений: учеб. пособие для вузов. - 2-е изд. - Т. 1. - М.: ГИФМЛ, 1962. - 464 с.
  102. Vavrik D., Jandejsek I. Experimental evaluation of contour J integral and energy dissipated in the fracture process zone // Engineering Fracture Mechanics. - 2014. - Vol. 129. - P. 14-25.

Copyright (c) 2021 Lyubutin P.S., Panin S.V., Titkov V.V., Eremin A.V., Sunder R.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies