Lifetime of AMg6 Alloy under Consecutive Shock-Wave and Gigacycle Loading

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the experimentally implemented test program for very-high-cycle loading (number of cycles 107-109) samples produced from massive planar targets (aluminum alloy AMg6) and subjected to the plane wave loading method (explosive generator). Shock-wave loading modes provided a controlled damage to simulate structural changes in fan blade materials under conditions of a high-speed collision with solid particles. Very-high-cycle loading was performed using the ultrasonic testing machine Shimadzu USF-2000 that allows testing samples on the basis of 108-1010 cycles with an amplitude of up to several tens of micrometers and a frequency test of 20 kHz. A significant reduction by 34% of the fatigue strength on the basis of 109 cycles for the AMg6 alloy pre-loaded with a shock wave is shown. The technique of the "in situ" determination of fatigue damage is based on the analysis of the amplitude-frequency characteristics corresponding to the change in effective elastic properties. It allowed us to explore the damage development stages taking into account nonlinear kinetics of the defects accumulation in the process of cyclic loading in multi- and gigacycle fatigue modes. The anomalous change of elastic properties of the material at critical levels of damage is established. A quantitative correlation between mechanical properties and scale-invariant characteristics of the topography of the fracture surface are formed in the processes of dynamic loading and gigacycle according to profilometry (interferometer-Profiler New View 5010 with a resolution of 0.1 nm). For the samples subjected to the preliminary shock-wave deformation, a decrease in the Hurst index in comparison with the undeformed samples was established. The latter is associated with an intensive fragmentation in the formation of dislocation ensembles during shock wave loading, which complicates the formation of an ordered system of defects under the subsequent fatigue loading

Full Text

Restricted Access

About the authors

V A Oborin

Institute of Continuous Media Mechanics UB RAS

M V Bannikov

Institute of Continuous Media Mechanics UB RAS

Y V Bayandin

Institute of Continuous Media Mechanics UB RAS

O B Naimark

Institute of Continuous Media Mechanics UB RAS

References

  1. Ботвина Л.Р. Гигацикловая усталость - новая проблема физики и механики разрушения // Заводская лаборатория. Диагностика материалов. - 2004. - Т. 70, № 4. - С. 41.
  2. Масштабная инвариантность роста усталостной трещины при гигацикловом режиме нагружения / В.А. Оборин, М.В. Банников, О.Б. T. Наймарк, Palin-Luc // Письма в журнал технической физики. - 2010. - Т. 36. - Вып. 22. - C. 76-82.
  3. Cowles B.A. High cycle fatigue in aircraft gas turbines - an industry perspective // International Journal of Fracture - 1996. - Vol. 80 - P. 147-163.
  4. Шанявский А.А. Моделирование усталостных разрушений металлов. Синергетика в авиации. - Уфа: Монография, 2007. - 500 c.
  5. Nicholas T. High Cycle Fatigue // A Mechanics of Material Perspective. - Elsevier, 2006. - 641 p.
  6. Peters J.O., Ritchie R.O. Influence of foreign object damage on crack initiation and early crack growth during high-cycle fatigue of Ti-6Al-4V // Eng. Fract. Mech. - 2000. - Vol. 67. - P. 193-207.
  7. Spanrad S., Tong J. Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6Al-4V aerofoil specimens // Materials Science and Engineering A. - 2011 - Vol. 528 - P. 2128-2136.
  8. Oakley S.Y., Nowell D. Prediction of the combined high- and low-cycle fatigue performance of gas turbine blades after foreign object damage // International Journal of Fatigue. - 2007. - Vol. 29. - P. 69-80.
  9. Chen Xi Foreign object damage on the leading edge of a thin blade // Mechanics of Materials. - 2005. - Vol. 37 - P. 447-457.
  10. Nowell D., Duó P., Stewart I.F. Prediction of fatigue performance in gas turbine blades after foreign object damage // International Journal of Fatigue. - 2003. - Vol. 25. - P. 963-969.
  11. Franklin J. Foreign object damage in the UK RAF // National Aerospace FOD Prevention Inc. (NAFPI), 1st Int. Conference. - London, 2003.
  12. Microstructure scaling properties and fatigue resistance of pre-strained aluminium alloys (part 1: AlCu alloy) / C. Froustey, O. Naimark, M. Bannikov, V. Oborin // European Journal of Mechanics A/Solids. - 2010. - Vol. 29. - P. 1008-1014.
  13. Bathias C., Paris P.C. Gigacycle Fatigue in Mechanical Practice. - Marcel Dekker Publisher Co, 2005. - 328 p.
  14. Prediction of Aluminum Alloy (AlMg6) Life Time under Consecutive Shock-Wave and Gigacycle Fatigue Loads / V. Oborin, Y. Bayandin, A. Savinykh, G. Garkushin, S. Razorenov, O. Naimark // AIP Conference Proceedings. - AIP Publishing. - 2018. - Vol. 2051. - No. 1. - P. 020216-1-020216-4.
  15. Cantrell J.H., Yost W.T. Nonlinear ultrasonic characterization of fatigue microstructures // Int. J. of Fatigue. - 2001. - Vol. 23. - P. 487-490.
  16. In situ characterization of fatigue damage evolution in a cast Al alloy via nonlinear ultrasonic measurements / A. Kumar et al. // Acta Materialia. - 2010. - Vol. 58. - No. 6. - С. 2143-2154.
  17. In situ damage assessment in a cast magnesium alloy during very high cycle fatigue / A. Kumar [et al.] // Scripta Materialia. - 2011. - Vol. 64. - No. 1. - P. 65-68.
  18. In situ nonlinear ultrasonic for very high cycle fatigue damage characterization of a cast aluminum alloy / W. Li, H. Cui, W. Wen, X. Su, C.C. Engler-Pinto Jr. // Materials Science and Engineering A. - 2015. - No. 645. - P. 248-254.
  19. Frequency Effect and Influence of Testing Technique on the Fatigue Behaviour of Quenched and Tempered Steel and Alumiunium Alloy / N. Schneider, J. Bödecker, C. Berger, M. Oechsner // International Journal of Fatigue. - 2016. - No. 93. - P. 224-23.
  20. Наймарк О.Б., Банников М.В. Нелинейная кинетика развития поврежденности и аномалии упругих свойств металлов при гигацикловом нагружении //Письма о материалах. - 2015. - Т. 5, №. 4. - С. 497-503.
  21. Экспериментальное и теоретическое исследование многомасштабных закономерностей разрушения при сверхмногоцикловой усталости / В.И. Бетехтин, А.Г. Кадомцев, М.В. Нарыкова, М.В. Банников, С.Г. Абаимов, И.Ш. Ахатов, T. Palin-Luc // Физическая мезомеханика. - 2017. - Т. 20, № 1.
  22. Федер Е., Данилов Ю. А., Шукуров А. Фракталы. - М.: Мир, 1991. - 254 с.
  23. Mandelbrot B.B. The fractal geometry of nature. - N.Y.: Freeman, 1983. - 480 p.
  24. Zaiser M. Scale invariance in plastic flow of crystalline solids // Advances in Physics. - 2006. - Vol. 55. - P. 185-245.
  25. Bouchaud E. Scaling properties of cracks // J. Phys. Condens. Matter. - 1997. - Vol. 9. - P. 4319-4344.
  26. Фрактальный анализ поверхности разрушения сплава АМг6 при усталостном и динамическом нагружении / В.А. Оборин, М.В. Банников, Ю.В. Баяндин, М.А. Соковиков, Д.А. Билалов, О.Б. Наймарк // Вестник Пермского национального исследовательского университета. Механика. - 2015. - № 2. - С. 116-126. doi: 10.15593/perm.mech/2015.2.07
  27. Barenblatt G.I. Scaling phenomena in fatigue and fracture // Int. J. of Fracture. - 2006. - Vol. 138. - P. 19-35.
  28. Hertzberg R.W. On the calculation of closure-free fatigue crack propagation data in monolithic metal alloys // Materials Science and Engineering A. - 1995. - Vol. 190. - P. 25-32.
  29. Mechanical and microstructural aspects of localized plastic flow / Sokovikov M. et al. // Solid State Phenomena. - 2016. - Vol. 243. - P. 113-120.
  30. Xie H., Sanderson D.J. Fractals effects of crack propagation on dynamic stress intensity factors and crack velocities // Int. Jour. Fract. - 1995. - Vol. 74. - P. 29-42.

Copyright (c) 2021 Oborin V.A., Bannikov M.V., Bayandin Y.V., Naimark O.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies