A System Development for Monitoring Kinetic Parameters of a Phase Transition in a Fluid-Saturated Soil Based on Fiber Optic Sensors

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The use of fiber-optic sensors (FBG) is a promising direction of developing various science and technology fields. Bragg grating has a number of advantages over standard sensors of deformation, stress, temperature, angles of inclination. In the mining industry, FBG are typically used to monitor temperatures during the construction of an ice barrier, to analyze the occurrence of bends in the sinking of mine shafts or when driving piles. As it is known, the process of thawing and freezing of porous media is accompanied by the effects of mass and heat transfer, the formation of cryogenic flows, changes in the stress-strain state of a medium. Therefore, it is important to develop a laboratory fiber-optic monitoring system to record the temperature and deformation characteristics of the phase transition in a porous medium. In this paper we develop a system analyzing the stress-strain state of porous soils saturated with moisture in the process of occurrence and movement of the phase transition between water and ice. For the formation of a sample with the fiber-optic system placed therein, we used a designed plastic form is used which had been 3D printed. For the analysis of the kinetic parameters of the phase transition and the stress-strain state of the soil, the optical-fiber temperature and strain sensors are used. The paper deals with the compensation methods of temperature deformation on the sensors of mechanical deformation of the rock and the deformation effect on the temperature sensors. Methods of creating a system with a linearly advancing phase transition for the analysis of the kinetic features of the water-ice/ice-water system are considered. The features of the phase transition in a porous water-saturated medium are investigated.

Full Text

Restricted Access

About the authors

A E Prokhorov

Institute of Continuous Media Mechanics UB RAS

O A Plekhov

Institute of Continuous Media Mechanics UB RAS

References

  1. Degrieck J., Wim D.W., Patricia V. Monitoring of fibre reinforced composites with embedded optical fibre Bragg sensors, with application to filament wound pressure vessels // NDT&E Int. - 2001. - Vol. 34. - Р. 289-296.
  2. Influence of lamination process on optical fiber sensors embedded in composite material / P. Lesiak, M. Szeląg, D. Budaszewski, R. Plaga, K. Mileńko, G. Rajan, Y. Semenova, G. Farrell, A. Boczkowska, A. Domański [et al.] // Measurement. - 2012. - Vol. 45. - Р. 2275-2280. doi: 10.1016/j.measurement.2012.03.010
  3. Marques C.A.F., Webb D.J., Andre P. Polymer optical fiber sensors in human life safety // Opt. Fiber Technol. - 2017. - Vol. 36. - P. 144-154.
  4. Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques / C. Hong, Y. Zhang, M. Zhang, L. Leung, L. Liu // Sensors and Actuators A. - 2016. - Vol. 244. - P. 184-197.
  5. Kousiatza C., Karalekas D. In-situ monitoring of strain and temperature distributions during fused deposition modeling process // Materials and Design. - 2016. - Vol. 97. - P. 400-406.
  6. Raongjant W., Jing M. Field testing of stiffened deep cement mixing piles under lateral cyclic loading // Earthquake Eng. Eng. - 2013. - Vol. 12. - P. 261-265.
  7. Rao Y.J. Recent progress in applications of in-fibre Bragg grating sensors // Opt. Laser. Eng. - 1999. - Vol. 31. - P. 297-324.
  8. Field validation of fibre Bragg grating sensors for measuring strain on driven steel piles / P. Doherty, D. Igoe, G. Murphy, K. Gavin, J. Preston, C. McAVOY [et al.] // Géotech. Lett. - 2015. - P. 74-79.
  9. Numerical simulation of artificial ground freezing in a fluid-saturated rock mass with account for filtration and mechanical processes / I.A. Panteleev, A.A. Kostina, O.A. Plekhov, L.Yu. Levin // Sciences in Cold and Arid Regions. - 2017. - Vol. 9(4). - P. 363-377.
  10. Soil nail monitoring using Fiber Bragg Grating sensors during pullout tests / H.H. Zhu, J.H. Yin, W. Jin, W.H. Zhou // The Joint 60th Canadian Geotechnical and 8th IAH-CNC Conferences Ottawa, 2007. - P. 821-828.
  11. Hong C.Y., Yin J.N., Zhou W.H. Study on cement grout quality of model soil nails measured using long gage FBG Sensing Technology // The 17th Southeast Asian Geotechnical Conference, 2010. - P. 237-240.
  12. Comparative study on the elongation measurement of a soil nail using optical lower coherence interferometry method and FBG method / C.Y. Hong, J.H. Yin, W. Jin, C. Wang, W.H. Zhou, H.H. Zhu // Adv. Struct. Eng. - 2010. - Vol. 13. - P. 309-319.
  13. Левин Л.Ю., Семин М.А., Плехов О.А. Сравнительный анализ существующих методов расчета толщины ледопородного ограждения строящихся шахтных столов. // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. - 2018. - № 4.
  14. Ершов Э.В. Общая геокриология: учебник. - М.: Изд-во МГУ, 2002. - 682 с.
  15. Шабаров А.Б. Физико-математическая модель и метод расчета течения газоконденсатной смеси в пласте // Вестн. Тюмен. гос. ун-та. Физико-математическое моделирование. Нефть, газ, энергетика. - 2014. - № 7. - С. 7-18.
  16. Коновалов А.А. Связь температур переохлаждения и кристаллизации влажного грунта с его прочностью в мерзлом состоянии // Инженерно-физический журнал. - 2015. - Т. 88, № 5. - С. 1043-1049.
  17. Дядькин Ю.Д., Шувалов Ю.В., Тимофеевский Л.С. Горная теплофизика (Регулирование теплового режима шахт и рудников). - Л.: Изд-во ЛГИ, 1976. - 96 с.
  18. Bouyoucos G.J. Degree of temperature to which soils can becooled without freezing // Journal of Agricultural Research. - 1920. - Vol. 20. - P. 267-269.
  19. Kemper W.D. Water and ion movement in thin films as influenced by the electrostatic charge and diffuse layer ofcations associated with clay mineral surfaces // Soil Science Society of America Proceedings. - 1960. - Vol. 24. - P. 10-16.
  20. Dirksen C., Miller R.D. Closed-system freezing of unsaturated soil // Soil Science Society of America Proceedings. - 1996. - Vol. 30. - P. 168-173.
  21. Furukawa Y., ShimadaW. 3-dimensional pattern-formation during growth of ice dendrites, its relation to universal law of dendritic growth // J. Crystal Growth. - 1993. - Vol. 128. - P. 234-249.
  22. Hoekstra P. Moisture movement in soil under temperature gradients with the cold side temperature below freezing // Water Resource Research. - 1966. - Vol. 2. - Р. 241-250.
  23. Hu H., Yang S., Lei Z. A numerical simulation for heat and moisture transfer during soil freezing // J. Hydraul. Eng. - 1992. - Vol. 7. - P. 1-8 (in Chinese with English abstract).
  24. Численное решение обратной задачи определения объемной теплоемкости породного массива в процессе искусственного замораживания / М.С. Желнин, О.А. Плехов, М.А. Семин [и др.] // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2017. - № 4. - С. 56-75.
  25. Bronfenbrener L. Modelling Heat and Mass Transfer in Freezing Porous Media. - N.Y.: Nova Science Publishers, Inc., 2012.
  26. Исследование особенностей неравновесного фазового перехода в флюидонасыщенном грунте / А.Е. Прохоров, М.С. Желнин, А.А. Костина, О.А. Плехов // Вестник Пермского университета. Физика. - 2018. - № 4 (42). - С. 31-37. doi: 10.17072/1994-3598-2018-4-31-37
  27. Шардаков И.Н., Кошелева Н.А., Цветков Р.В. Экспериментальный и теоретический варианты термокомпенсации волоконно-оптических датчиков деформации // Прикладная фотоника. - 2017. - № 4. - C. 325-336.
  28. Determination of Thermo-Optic Coefficient in Liquids with Fiber Bragg Grating Refractometer / R. Kamikawachi, I. Abe, A. Paterno, H. Kalinowski, M. Muller [et al.] // Optics Communications. - 2008. - Vol. 281. - No. 4. - P. 621-625.
  29. Kang D., Kim H.-Y., Kim D.-H. Enhancing Thermal Reliability of Fiber-Optic Sensors for Bio-Inspired Applications at Ultra-High Temperatures // Smart Materials and Structures. - 2014. - Vol. 23. - No. 7.
  30. The study of energy balance in metals under deformation and failure process / A. Iziumova, A. Vshivkov, A. Prokhorov, A. Kostina, O. Plekhov // Quantitative InfraRed Thermography Journal. - 2016. - Vol. 13. - No. 2. - P. 242-256.

Statistics

Views

Abstract: 13

PlumX


Copyright (c) 2021 Prokhorov A.E., Plekhov O.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies