The Influence of Stress Concentrators on the Magnesium Alloy Mechanical Behavior under Deformation at High Strain Rates in the Temperature Range from 295 to 673 K

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the experimental results of the mechanical behavior of Mg-3% Al-1% Zn alloy at high strain rates at room and elevated temperatures. The flat samples with smooth working parts and notches with a radius of 10 mm, 5 mm and 2.5 mm were used. The experimental studies were carried out using the high-velocity servo hydraulic test machine Instron VHS 40 / 50-20. The samples were heated with flat ceramic infrared emitters on average from 60 seconds to 160 seconds. The temperature control in the working part of the samples was carried out in real time using a chromel-alumel thermocouple. Data on the stress triaxiality effect on the plastic flow stress and the strain to fracture of the magnesium alloy under tension with strain rates of 100 and 1000 1 / s at temperatures of 295 K, 473 K and 673 K were obtained. The stress triaxiality factor was varied within the range from 0.33 to 0.5. It was found that the value of tensile strain to fracture of the magnesium alloy decreased twice when the stress triaxiality factor increased from 0.33 to 0.5. This effect is realized in a wide range of strain rates and homologous temperatures T/Tm from 0.32 to 0.73 (Tm= 923 K is the melting point of Mg-3% Al - 1% Zn magnesium alloy). The obtained data were used for calibration of plastic deformation and fracture models which are used in computer-aided design of products from MA2-1magnesium alloy.

Full Text

Restricted Access

About the authors

V A Skripnyak

National Research Tomsk State University

V V Skripnyak

National Research Tomsk State University

A A Kozulin

National Research Tomsk State University

K V Iohim

National Research Tomsk State University

References

  1. Frost H.J., Ashby M.F. Deformation Mechanism Maps. - Oxford: Pergamon Press,1983. - 166 p.
  2. Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates / I. Ulacia, N.V. Dudamell, F. Galvez, S. Yi, M.T. Perez-Prado, I. Hurtado // Acta Materialia. - 2010. - Vol. 58. - P. 2988-2998.
  3. Tensile characterization and constitutive modeling of AZ31B magnesium alloy sheet over wide range of strain rates and temperatures / I. Ulacia, C.P. Salisbury, I. Hurtado, M.J. Worswick // Journal of Materials Processing Technology. - 2011. - Vol. 211. - Iss. 5. - P. 830-839.
  4. Johnson-Cook based criterion incorporating stress triaxiality and deviatoric effect for predicting elevated temperature ductility of titanium alloy sheets / B. Valoppi, S. Bruschi, A. Ghiotti, R. Shivpur // International Journal of Mechanical Sciences. -2017. - Vol. 123. - P. 94-105.
  5. Получение мелкодисперсных материалов на основе магния. Результаты численного моделирования и эксперимент / В.Н. Аптуков, П.В. Романов, Н.Е. Скрябина, Д. Фрушар // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2017. - № 3. - С. 5-16.
  6. Влияние структуры на сопротивление пластической деформации алюминиевого сплава 1560 после обработки методом прессования рифлением / Е.Н. Москвичев, В.А. Скрипняк, Д.В. Лычагин, А.А. Козулин, В.В. Скрипняк // Письма о материалах. - 2016. - Т. 6, № 2. - С. 141-145.
  7. The flow behavior in as-extruded AZ31 magnesium alloy under impact loading / В. Zhu, X. Liu, C. Xie, W. Liu, C. Tang, L. Lu // Journal of Magnesium and Alloys. -2018. - Vol. 6. - P. 180-188.
  8. Palumbo G., Sorgente D., Tricarico L. A numerical and experimental investigation of AZ31 formability at elevated temperatures using a constant strain rate test // Materials and Design. - 2010. - Vol. 31. - P. 1308-1316.
  9. Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures / A.S. Khan, A. Pandey, T. Gnäupel-Herold, R.K. Mishra // International Journal of Plasticity. - 2011. - Vol. 27. - P. 688-706.
  10. Effect of structural factors on mechanical properties of the magnesium alloy MA2-1 under quasi-static and high strain rate deformation conditions / G.V. Garkushin, S.V. Razorenov, V.A. Krasnoveikin, A.A. Kozulin, V.A. Skripnyak // Physics of the Solid State. - 2015. - Vol. 57. - No. 2. - P. 337-343.
  11. Shock response of magnesium single crystals at normal and elevated temperatures / G.I. Kanel, G.V. Garkushin, A.S. Savinykh, S.V. Razorenov, T. De Resseguier, W.G. Proud, M.R. Tyutin // Journal of Applied Physics. - 2014. - Vol. 116. - No. 14. - P. 143504.
  12. Effect of temperature and heating rate on mechanical properties of magnesium alloy AZ31 / Y. Quan, C. Bin, L. Ji, Z. Ding-fei, Q. Guo-Zheng // Transactions Nonferrous Metal Society of China. - 2010. - Vol. 20. - P. 426-429.
  13. Experimental study on tensile property of AZ31B magnesium alloy at different high strain rates and temperatures / F. Feng, S. Huang, Z. Meng, J. Hu, Y. Lei, M. Zhou, D. Wu, Z. Yang // Materials and Design. - 2014. - Vol. 57. - P. 10-20.
  14. High temperature deformation and microstructural instability in AZ31 magnesium alloy / S. Spigarelli, O.A. Ruano, M. El Mehtedi, J.A. Del Valle // Materials Science and Engineering A. - 2013. - Vol. 570. - P. 135-148.
  15. Hot compressive flow stress modeling of homogenized AZ61 Mg alloy using strain-dependent constitutive equations / H. Wu, J. Yang, F. Zhu, C. Wu // Materials Science and Engineering A. - 2013. - Vol. 574. - P. 17-24.
  16. Effect of temperature and strain rate on the deformation behavior and microstructure of a homogenized AZ31 magnesium alloy / G. Bajargan, G. Singh, G. Sivakumar, U. Ramamurty // Materials Science and Engineering A. - 2013. - Vol. 579. - P. 26-34.
  17. Chapuis A., Liu Q. Investigating the temperature dependency of plastic deformation in a Mg-3Al-1Zn alloy // Materials Science and Engineering A. - 2018. -Vol. 725. - P. 108-118.
  18. Maksoud I.A., Ahmed H., Rödel J. Investigation of the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloy // Materials Science and Engineering A. - 2009. - Vol. 504. - P. 40-48.
  19. Plastic deformation and ductility of magnesium AZ31B-H24 alloy sheet from 22 to 450 °C / A.R. Antoniswamy, E.M. Taleff, L.G. Hector Jr., J.T. Carter // Materials Science and Engineering A. - 2015. - Vol. 631. -P. 1 -9.
  20. Selvarajou B., Joshi S.P., Benzerga A.A. Three dimensional simulations of texture and triaxiality effects on the plasticity of magnesium alloys // Acta Materialia. - 2017. - Vol. 127. - P. 54-72.
  21. Strain rate sensitivities of deformation mechanisms in magnesium alloys / H. Wang, P. Wu, S. Kurukuri, M.J. Worswick, Y. Peng, D. Tang, D. Li // International Journal of Plasticity. - 2018. - Vol. 107. - P. 207-222.
  22. Twinning, dynamic recrystallization, and crack in AZ31 magnesium alloy during high strain rate plane strain compression across a wide temperature / X. Liu, B.W. Zhu, C. Xie, J. Zhang, C.P. Tang, Y.Q. Chen // Materials Science and Engineering A. - 2018. - Vol. 733. -P. 98-107.
  23. Численное исследование эволюции напряженно- деформированного состояния структурно-неоднородного материала при одноосном нагружении / С.В. Смирнов, А.В. Коновалов, М.В. Мясникова, Ю.В. Халевицкий, А.С. Смирнов // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2016. - № 3. - С. 175-187.
  24. Verleysen P., Peirs J. Quasi-static and high strain rate fracture behaviour of Ti6Al4V// International // Journal of Impact Engineering. - 2017. - Vol. 108. - P. 370-388.
  25. Neilsen K.L., Tvergaard V. Ductile shear failure or plug failure of spot welds modelled by modified Gurson model // Engineering Fracture Mechanics. - 2010. - Vol. 77. - P. 1031-1047.
  26. Tvergaard V. Study of localization in a void-sheet under stress states near pure shear // International Journal of Solids and Structures. - 2015. - Vol. 60-61. -P.28-34.
  27. Gao C.Y., Zhang L.C., Yan H.X. A new constitutive model for HCP metals // Materials Science and Engineering A. - 2011. - Vol. 528. - P. 4445-4452.
  28. Bai Y., Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence // International Journal of Plasticity. - 2008. - Vol. 24. -P. 1071- 1096.
  29. Selini N., Elmeguenni M., Benguediab M. Effect of the Triaxiality in Plane Stress Conditions // Engineering, Technology and Applied Science Research. - 2013. - Vol. 3. - No. 1. - P. 373-380.
  30. A constitutive and fracture model for AZ31B magnesium alloy in the tensile state / F. Feng, S. Huang, Z. Meng, J. Hu, Y. Lei, M. Zhou, Z. Yang // Materials Science and Engineering A. - 2014. - Vol. 594. - P. 334-343.
  31. Skripnyak V.A., Skripnyak V.V., Skripnyak E.G. Ductility of titanium alloys in a wide range of strain rates // Proceedings IRF2018: 6th International Conference on Integrity-Reliability-Failure Lisbon/Portugal, 22-26 July 2018. - Porto, Portugal: FEUP-INEGI. - 2018. - P. 813-822.
  32. Li Q. Mechanical properties and microscopic deformation mechanism of polycrystalline magnesium under high-strain-rate compressive loadings // Materials Science and Engineering A. - 2012. - Vol. 540. - P. 130-134.
  33. Prasad N.S., Narasimhan R., Suwas S. Effect of notch acuity on the fracture behavior of AZ31 Mg alloy // Engineering Fracture Mechanics. - 2018. - Vol. 187. - P. 241-261.
  34. Напряженно-деформированное состояние и разрушение элементов конструкций с острыми концентраторами напряжений при изгибе / С.Б. Сапожников, М.А. Иванов, С.И. Ярославцев, И.А. Щербаков // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2017. - № 4. - С. 40-55.
  35. Mechanical Behavior and Microstructure Evolution of a Magnesium Alloy AZ31B Under Low Stress Triaxiality / H. Pan, F. Wang, L. Jin, M. Feng, J. Dong // Journal of Materials Science and Technology. - 2016. - Vol. 32. - P. 1282-1288.
  36. Kubík P., Šebek F., Petruška J. Notched specimen under compression for ductile failure criteria // Mechanics of Materials 2018. - Vol. 125. - P. 94-109.
  37. Failure mechanisms of light alloys with a bimodal grain size distribution / V.A. Skripnyak, E.G. Skripnyak, N.V. Skripnyak, I.K. Vaganova, V.V. Skripnyak // 11th. World Congress on Computational Mechanics (WCCM XI). 25-29, July, 2014. - Barcelona, Spain, 2014. - IV. - P. 3915-3925.

Copyright (c) 2021 Skripnyak V.A., Skripnyak V.V., Kozulin A.A., Iohim K.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies