Comprehensive analysis of mechanical behavior and fracture processes of specimens of three-dimensional reinforced carbon fiber in tensile tests

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The aim of the work is to develop a procedure of an experimental study related to the inelastic behavior and failure process of a 3D reinforced composite material taking into account the influence of interweaving schemes based on a combined use of optical methods analyzing strain and temperature fields, as well as a method for recording acoustic emission signals. Uniaxial tension tests were conducted for six groups of specimens which preforms were made with the 3D weaving technology in six different ways of weaving. It is noted that the CFRP-samples with the orthogonal and orthogonal conjoint weave scheme are characterized by high values of maximum load compared to the samples with the interlayer reinforcement and layered samples. The choice of the optimal parameters (subset and step) of the correlation processing of digital images in the study of the PEP samples is illustrated taking into account the structural features of the material. We carried out the analysis of changes in the cumulative energy of AE-signals obtained by summing the values of the energy parameter and reflecting the intensity of the accumulation of defects in the material during loading. It was found that the samples with the orthogonal, orthogonal-combined weave scheme, as well as with pairwise interlayer reinforcement, are characterized by a low damage accumulation rate in the material, the process of defect initiation and propagation proceed uniformly. The samples with the pairwise interlayer combined reinforcement with through interlayer reinforcement and layered samples are characterized by the intensity of the crack formation in the material during loading. The results of the analysis and quantitative comparison of parameters (maximum load, ultimate elongation of samples, intensity of local heating of the material at the time of macrodestruction, the maximum value of the cumulative energy achieved at the time of failure, the number of recorded emissions of the AE signal) were obtained for groups of the samples with different weave patterns. It is shown that the multiparameter analysis of the experimental data allows selection of a composite optimal properties during its development in accordance with the required operating conditions.

Full Text

Restricted Access

About the authors

T V Tretyakova

Perm National Research Polytechnic University

A N Dushko


E M Strungar

Perm National Research Polytechnic University

E M Zubova

Perm National Research Polytechnic University

D S Lobanov

Perm National Research Polytechnic University


  1. Review of applications for advanced three-dimensional fibre textile composites / A.P. Mouritz, M.K. Bannister, P.J. Falzon, K.H. Leong // Composites: Part A. - 1999. - Vol. 30. - Iss. 12. - P. 1445-1461. doi: 10.1016/S1359-835X(99)00034-2
  2. Bilisik K. Multiaxis three-dimensional weaving for composites: A review // Textile Research Journal. - 2012. - Vol. 82. - Iss. 7. - Р. 725-743. doi: 10.1177/0040517511435013
  3. Bilisik K. Three dimensional braiding for composites: A review // Textile Research Journal. - 2013. - Vol. 83. - Iss. 13. - P. 1414-1436. doi: 10.1177/0040517512450766
  4. Automated manufacture of 3D reinforced aerospace composite structures / G. Dell'Anno, I. Partridge, D. Cartié [et al.] // International Journal of Structural Integrity. - 2012. - Vol. 3. - Iss. 1. - P. 22-40. doi: 10.1108/17579861211209975
  5. Spatiotemporal characterization of 3D fracture behavior of carbon-fiber-reinforced polymer composites / S. Pei, K. Wang, Y. Li, D. Zeng, X. Xiao // Composite Structures. - 2018. - Vol. 203. - P. 30-37. doi: 10.1016/j.compstruct.2018.07.022
  6. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1: Materials, methods and principal results / S.V. Lomov, A.E. Bogdanovich, D.S. Ivanov [et al.] // Composites Part A: Applied Science and Manufacturing. -2009. - Vol. 40. - Iss. 8. - Р. 1134-1143.
  7. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 2: Comprehensive experimental results / D.S. Ivanov, S.V. Lomov, A.E. Bogdanovich, M. Karahan, I. Verpoest // Composites Part A: Applied Science and Manufacturing. - 2009. - Vol. 40. - Iss. 8. - Р. 1144-1157.
  8. Theoretical-experimental study of mechanical behavior in 3D compositesunder quasi-steady damage / M.V. Tsepennikov, A.A. Strom, I.A. Povyshev, O.Yu. Smetannikov // PNRPU Mechanics Bulletin. - 2016. - Vol. 2. - Р. 143-158. doi: 10.15593/perm.mech/2016.2.10.
  9. Baucom J.N., Zikry M.A. Evolution of failure mechanisms in 2D and 3D woven composite systems under quasi-static perforation // Journal of Composite Materials. - 2003. - Vol. 38. - Iss. 6. - P. 535.
  10. Huang G., Zhong Z. Tensile behavior of 3D woven composites by using different fabric structures // Material Design. - 2002. - Vol. 23. - Iss. 7. - P. 671-674. doi: 10.1016/S0261-3069(02)00053-5
  11. Tensile response of carbon-aramid hybrid 3D braided composites / Y. Zheng, Y. Sun, J. Li, L. Limin, S. Tian // Materials & Design. - 2017. - Vol. 116. - P. 246-252. doi: 10.1016/j.matdes.2016.11.082
  12. Lobanov D.S., Babushkin A.V., Luzenin A.Yu. Effect of increased temperatures on the deformation and strength characteristics of a GFRP based on a fabric of volumetric weave // Mechanics of Composite Materials. - 2018. - Vol. 54. - Iss. 5 - P. 655-664.
  13. Full-field analysis of shear test on 3D orthogonal woven C/C composites / L. Qin, Z. Zhang, X. Li [et al.] // Composites: Part A. - 2012. - Vol. 43. - P. 310-316. doi: 10.1016/j.compositesa.2011.11.006
  14. Fatigue behavior of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass reinforced composites / V. Carvelli, G. Gramellini, S.V. Lomov, A.E. Bogdanovich [et al.] // Composites Science and Technology. - 2010. - Vol. 70. - Iss. 14. - P. 2068-2076. doi: 10.1016/j.compscitech.2010.08.002
  15. Dattoma, V., Giancane, S. Evaluation of energy of fatigue damage into GFRC through digital image correlation and thermography // Composites Part B: Engineering. - 2013. - Vol. 47. - P. 283-289.
  16. Dau F., Kergomard Y.D. Study on interlock 3X damage mechanisms under impact loading using a deformable impactor // EPJ Web of Conferences. - 2010. - Vol. 6. - Paper 20012. doi: 10.1051/epjconf/20100620012
  17. Effect of temperature on bending properties and failure mechanism of three-dimensional braided composite / D. Li, D. Fang, G. Zhang, H. Hu // Materials and Design. - 2012. - Vol. 41. - P. 167-170.
  18. Fan W., Li J., Guo D. Effect of thermo-oxidative aging on three-dimensional and four-directional braided carbon fiber/epoxy composite // Journal of Composite Materials. - 2015. - Vol. 49. - Iss. 25. - P. 3189-3202.
  19. Экспериментальные исследования закритического деформирования и разрушения конструкционных материалов: моногр. / В.Э. Вильдеман, Е.В. Ломакин, М.П. Третьяков, Т.В. Третьякова, Д.С. Лобанов. - Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2018. - 156 с.
  20. Use of diffuse approximation on DIC for early damage detection in 3D carbon/epoxy composites / P. Feissel, J. Schneider, Z. Aboura, P. Villon // Composites Science and Technology. - 2013. - Vol. 88. - P. 16-25. doi: 10.1016/j.compscitech.2013.08.027
  21. Sutton M.A., Orteu J.-J., Schreier H. Image correlation for shape, motion and deformation measurements. - University of South Carolina, Columbia, SC, USA, 2009. - 322 p.
  22. Wildemann V.E., Spaskova E.V., Shilova A.I. Research of the damage and failure processes of composite materials based on acoustic emission monitoring and method of digital image correlation // Solid State Phenomena. -2016. - Vol. 243. - P. 163-170. doi: 10.4028/ href='' target='_blank'>
  23. Экспериментальное исследование влияния дефектов на прочность композитных панелей методами корреляции цифровых изображений и инфракрасной термографии / Д.С. Лобанов, В.Э. Вильдеман, Е.М. Спаскова, А.И. Чихачев // Вестник Пермского национального исследовательского политехнического унвиерситета. Механика. - 2015. - № 4. - С. 159-170
  24. Исследование деформации и разрушения по данным акустической эмиссии, корреляции цифровых изображений и тензометрии / С.В. Панин, А.В. Бяков, П.С. Любутин, О.В. Башков [и др.] // Заводская лаборатория. Диагностика материалов. -2011. - Т. 77, № 9. - С. 50-59.
  25. Comparison of infrared and 3D digital image correlation techniques applied for mechanical testing of materials / L. Krstulović-Opara, M. Surjak, M. Vesenjak, Z. Tonković, et al. // Infrared Physics and Technology. - 2015. - Vol. 73. - P. 166-174.
  26. Шилова А.И. Метод регистрации сигналов акустической эмиссии применительно к исследованию процессов разрушения конструкционных материалов: учеб. пособие / А.И. Шилова; под ред. В.Э. Вильдемана. - Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2015. - 56 с.
  27. Monitoring of acoustic emission damage during tensile loading of 3D woven carbon/epoxy composites. / S.V. Lomov, M. Karahan, A.E. Bogdanovich, I. Verpoest // Textile Research Journal. - 2014. - Vol. 84. - No. 13. - P. 1373-1384.
  28. Acoustic emission characterization of matrix damage initiation in woven CFRP composites / M. Bourchack, A. Khan, S.A. Badr, W Harasani // Materials Sciences and Applications. - 2013. - Vol. 4. - Iss. 9. - P. 509-515.
  29. Grosse C.U. Ohtsu M. Acoustic emission testing. - Springer, Berlin, Heidelberg, 2008. - 402 р. doi: 10.1007/978-3-540-69972-9
  30. Третьякова Т.В. Особенности использования программного обеспечения Vic-3D, реализующего метод корреляции цифровых изображений, в приложении к исследованию полей неупругих деформаций // Вычисл. мех. сплош. сред. - 2014. - Т. 7, № 2. - С. 162-171. doi: 10.7242/1999-6691/2014.7.2.17
  31. Tretyakova T., Tretyakov M., Wildemann V. Stable crack growth in Al-Cu-Mg alloy under various stiffness of loading system in bodies with concentrators // Procedia Structural Integrity. - 2018. - Vol. 13. - P. 1774-1779. doi: 10.1016/j.prostr.2018.12.369
  32. Панин С.В., Любутин П.С., Титков В.В. 32. Анализ изображений в оптическом методе оценки деформаций. - Новосибирск: Изд-во СО РАН, 2017. - 288 с.



Abstract: 17


Copyright (c) 2021 Tretyakova T.V., Dushko A.N., Strungar E.M., Zubova E.M., Lobanov D.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies