The Research of the Mechanical Behavior of Elastically Transformable Composite Structures

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The paper presents the computational and experimental studies of the stress-strain state of the composite flexible joint during transformation of the rod structure. A flexible joint consists of two co-acting tape springs and acts as an actuator for the self-deployment of large-scale space structures. Flexible joints that have different reinforcement patterns and shapes of cut-outs have been studied. Full-scale tests of the joint were carried out using a tailored facility that ensures its complete folding and unfolding and records joint moments for each folding angle. The strain pattern for each angle was recorded using a system of photo and video recording based on DIC (Digital Image Correlation) - VIC 3D. To identify elastic properties of the flexible joint, the materials mechanical testing was performed and tensile and compressive Young modulus and ultimate strength were determined. To reduce the volume of full-scale tests, a micromechanical model of the material taking in account the properties of reinforcement fibers, resin and weaving pattern was simulated in Digimat. Verification of micromechanical model was performed based on tensile and compressive properties. Other mechanical properties of the material were determined via virtual testing in Digimat system. Finite element modelling of joint folding and deployment processes was carried out in Ansys Workbench and LS-Dyna. Calculations were carried out for various structures of the joint based on the explicit and implicit methods. Dynamic behavior, geometric nonlinearity, progressive failure and self-contact of joints surface were taken into account in the computational model. As a result, strain pattern and maximal joint moment were determined. The computational strain and joint moment have a good agreement with the experimental data. Based on the results of the study, a comprehensive computational and experimental method to determine rational properties of flexible joints for transformable composite structures is suggested.

Full Text

Restricted Access

About the authors

V I Khaliulin

Kazan National Research Technical University N.A. Tupolev

V V Batrakov

Kazan National Research Technical University N.A. Tupolev

L P Shabalin

Kazan National Research Technical University N.A. Tupolev

M Yu Kiauka

Kazan National Research Technical University N.A. Tupolev

O N Bezzametnov

Kazan National Research Technical University N.A. Tupolev


  1. Формостабильные и интеллектуальные конструкции из композиционных материалов / Г.А. Молодцов, В.Е. Биткин, В.Ф. Симонов, Ф.Ф. Урмансов. - М.: Машиностроение, 2000. - 352 с.
  2. Smart Intelligent Aircraft Structures (SARISTU): Proceedings of the Final Project Conference / ed. by Piet Christof Wölcken, Michael Papadopoulos. SpringerLink (Online service). 1st ed. 2016. XXVIII, 1039 p. 865 illus., 774 illus. in color. online resource.
  3. Пат. 2414028 Российская Федерация, МПК H 01 Q 15/20. Шарнирный узел складного рефлектора космической антенны / Куликов Ю.А., Кудрявцев И.А.; патентообладатель Марий. гос. техн. ун-т. № 2010111589/07; заявл. 25.03.2010; опубл. 10.03.2011, Бюл. № 7. - 6 с.
  4. Пат. 2423760 Российская Федерация, МПК H 01 Q 15/20. Способ обеспечения жесткости складного стержневого элемента / Кудрявцев И.А. № 2010106761/09; заявл. 24.02.2010; опубл. 10.07.2011, Бюл. № 7. - 5 с.
  5. Пат. 2423760 Российская Федерация, МПК B 23 G 1/22. Устройство формирования упругого стержневого элемента / Алексашин С.Н., Пичхадзе К.М. [и др.]; патентообладатель АО «Научно-производственное объединение имени С.А. Лавочкина» (RU). № 2013107728/02; заявл. 22.02.2013; опубл. 20.09.2013, Бюл. № 26. - 15 с.
  6. Пат. № US7617639 МПК E04H12/00; E04H12/18; H01Q1/08. Заявитель(и): USAIRFORCE [US] Заявка № US20060463063; заявл.: 20060808; опубл.: 2009-11-17 Tape-spring deployable boom.
  7. Пат. № US2016023781МПКB64G1/22; B64G1/44; E04C3/00. Заявитель(и): THALES SA [FR]]; Заявка № US201514805317; заявл.: 20150721; опубл.: 2016-01-28 Tape spring deployable structure.
  8. Footdale J.N., Murphey T.W. Mechanism design and testing of a self-deploying structure using flexible composite tape springs // Proceedings of the 42nd Aerospace Mechanisms Symposium, NASA Goddard Space Flight Center. - 2014. - May 14-16. - Р. 497-510.
  9. Shape memory polymers and their composites in aerospace applications: a review / Y. Liu, H. Du, L. Liu, J. Leng // Smart Materials and Structures. - 2014. - Vol. 23. - № 2.
  10. Wrapping fold and deployment characteristics of boom-membrane integrated space structures / Sakamoto Hiraku, Furuya Hiroshi, Satou Yasutaka, Okuizumi Nobukatsu, Takai Moto, C. Natori M. // 2nd AIAA Spacecraft Structures Conference. SciTech2015. - Florida: Kissimmee, 2015.
  11. Mansourinejad H., Sharavi M., Daneshjoo K. Design and analysis of oscillation-decreasing mechanism on the deployable composite boom // Journal of Spacecraft and Rockets. - 2015. - Vol. 52(4). - Р. 1091-1100.
  12. Design and validation of a carbon-fiber collapsible hinge for space applications: a deployable boom / D. Piovesan, M. Zaccariotto, C. Bettanini, M. Pertile, S. Debei // ASME. J. Mechanisms Robotics. - 2016. - Vol. 8(3). - Р. 1-17.
  13. Deployment of bistable self-deployable tape spring booms using a gravity offloading system / Mao Huina, Ganga Pier, Ghiozzi Michele, Ivchenko Nickolay, Tibert Gunnar // Journal of Aerospace Engineering. - 2017. - Vol. 30(4). - Р. 211-220.
  14. Roh Jin-Ho, Bae Jae-Sung. Softenable composite boom for reconfigurable and self-deployable structures // Mechanics of Advanced Materials and Structures. - 2016. - Vol. 24(8). - Р. 698-711.
  15. Shape memory composites for self-deployable structures in aerospace applications / L. Santo, F. Quadrini, A. Accettura, W. Villadei // Procedia Engineering. - 2014. - Vol. 88. - Р. 42-47.
  16. Mallikarachchi Ch., Pellegrino S. Design of ultrathin composite self-deployable booms // Journal of Spacecraft and Rockets. - 2014. - Vol. 51(6). - Р. 1811-1821.
  17. Kwok K., Pellegrino S. Viscoelastic effects in tape springs // Proceedings of 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. - Denver, Colorado, 2011. - 4-7 April.
  18. Block J., Straubel M., Wiedemann M. Ultralight deployable booms for solar sails and other large gossamer structures in space // Acta Astronautica. - 2011. - Vol. 68(7-8). - P. 984-992.
  19. Datashvili L.S., Baier H., Rocha-Schmidt L. Multi-scale analysis of structures made of triaxially woven fabric composites with stiff and flexible matrix materials // Proceedings of 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. - Denver, Colorado, 2011. - 4-7 April.
  20. Endruweit A., Long A.C. A model for the in-plane permeability of triaxially braided reinforcements // Composites Part A: Applied Science and Manufacturing. - 2011. - Vol. 42(2). - P. 165-172.
  21. Lane S.A., Murphey T.W., Zatman M. Overview of the innovative space-based radar antenna technology program // Journal of Spacecraft and Rockets. - 2011. - Vol. 48(1). - P. 135-145.
  22. Mallikarachchi H.M.Y.C., Pellegrino S. Design and validation of thin-walled composite deployable booms with tape-spring hinges // Proceedings of 52nd AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference. - Denver, Colorado. - 2011. - 4-7 April.
  23. Mallikarachchi H.M.Y.C., Pellegrino S. Quasi-static folding and deployment of ultrathin composite tape-spring hinges // Journal of Spacecraft and Rockets. - 2011. - Vol. 48(1). - P. 187-198.
  24. Mallikarachchi H.M.Y.C. Thin-Walled Composite Deployable Booms with Tape-Spring Hinges: Doctor’s degree dissertation. - Cambridge, 2011. - 202 p.
  25. Analysis of mechanical properties in bending processes and optimal design of simple tape spring / Y. Hongling, Z. Chunhua, Z. Yang, Y. Qi, X. Yanni // Journal of Modeling in Mechanics and Materials. - 2017. doi: 10.1515/jmmm-2016-0156
  26. Sakovsky M., Pellegrino S., Mallikarachchi H.M.Y.C. Folding and deployment of closed cross-section dual-matrix composite booms // 3rd AIAA Spacecraft Structures Conference, AIAA SciTech Forum, (AIAA 2016-0970).
  27. Yee J.C.H., Pellegrino S. Composite tube hinges // Journal of Aerospace Engineering. - 2005. - Vol. 18. - № 4. - P. 224-231. doi: 10.1061/(ASCE)0893-1321(2005)18:4(224)
  28. Yinji M., Daining F. Design theory and dynamic mechanical characterization of the deployable composite tube hinge // Science China: Physics, Mechanics and Astronomy. - 2011. - Vol. 54. - No. 4. - P. 633-639. doi: 10.1007/s11433-011-4286-0
  29. Chen W., Fang G., Hu Y. An experimental and numerical study of flattening and wrapping process of deployable composite thin-walled lenticular tubes // Thin-Walled Structures. - 2017. - Vol. 111. - P. 38-47. doi: 10.1016/j.tws.2016.11.009
  30. Ekelow J. Design and manufacturing of thin composite tape springs: Master degree dissertation. - Stockholm, 2014. - 34 p.
  31. Dewalque F., Collette J.P., Brüls O. Mechanical behaviour of tape-springs used in the deployment of reflectors around a solar panel // Acta Astronautica. - 2015. - Vol. 123. - P. 271-282.
  32. Xin L., Wenbin Y. (2017) TexGen4SC. - URL:
  33. Hua L., Brown L.P., Long A.C. Modelling and simulating textile structures using TexGen // Advanced Materials Research. - 2011. - Vol. 331. - P. 44-47.
  34. Optimizing the quasi-static folding and deploying of thin-walled tube flexure hinges with double slots / H. Yang, Z.Q. Deng, R.Q. Liu [et al.] // Chin. J. Mech. Eng. - 2014. - Vol. 27(2). - P. 279-286.
  35. Design for a unitary graphite composite instrument boom / W. Alexander, R. Carlos, J. Sturm, P. Rossoni // National Space and Missile Materials Symposium; 21-25 Jun. 2004. - Seattle, WA; United States, 2004.
  36. Gibson R.F. Principles of composite material mechanics. Third edition. - CRC Press, Taylor & Francis Group, 2012. - XXIX. - 625 p.
  37. Digimat users' manual, Release 2016.0 - January 2016. - 1617 p.
  38. ANSYS. Help system. Rel.11.0. ANSYS Inc. - Houston, 2008.
  39. LS-DYNA THEORY MANUAL. Livermore Software Technology Corporation. - California, 2006. - 680 p.



Abstract: 58


Copyright (c) 2021 Khaliulin V.I., Batrakov V.V., Shabalin L.P., Kiauka M.Y., Bezzametnov O.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies