New Paradigms in Metals Fatigue Description

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Present processes of damages accumulation in metals under regular cyclic loads were analyzed. Based on the concept of physical mechanics, a sequence of damage accumulation mechanisms was considered in accordance with the stress level increasing. It was shown that the evolution of metals behavior takes place in the direction from micro-, to meso-, and then macroscale levels in accordance with the bifurcation diagram under consideration. It was explained why metals mechanical characteristic called fatigue limit cannot be used for simulation of structures durability and in-service life-time. The problem of the bimodal durability distribution for different kinds of metals was discussed when the bifurcation transition takes place from one scale level to another one. It was shown that in the bifurcation region metals can experience a constant stress level but its reaction appeared in two ways with a different probability because the difference in damage accumulation belonged to the scale above and below the bifurcation region. Mechanisms of the subsurface fatigue cracking in a very-high-cycle-fatigue regime were reviewed. It was demonstrated that the dominant process in damages accumulation under the metal surface and appearance of the subsurface cracking origin is related to sliding deformation and material torsion during material uploading. Test data for fatigue limit determination of aviation structural materials in accordance with the standard were reviewed. The influence of mechanical characteristics of the fatigue limit value was analyzed. It was demonstrated that the major part of the material realized all three scale levels during the stress level increasing from one unit to another. The realization of the low-cycle-fatigue is not the computationally recommended case for the operated complex structures when the mesoscale of metal fatigue does not exist.

Full Text

Restricted Access

About the authors

A A Shanyavskiy

Aviation Register of the Russian Federation

A P Soldatenkov

Aviation Register of the Russian Federation

References

  1. Wöhler A. Über die Versuche zur Ermittlung der Festigkeit von Achsen, welche in den Werkstätten der Niederschlesisch-märkischen Eisenbahn zu Frankfurt an der Oder angestellt sind // Zeitschrift für Bauwesen. -1863. - Vol. 13. - Р. 233-258.
  2. Мамаева Е.И. Машиностроение. Энциклопедия. Раздел II. Т. II-1. Физико-механические свойства. Испытания металлических материалов. - М.: Машиностроение, 2010. - C. 217-285.
  3. ГОСТ 25.502-79. Расчеты и испытания на прочность в машиностроении. Методы механических испытаний металлов. Методы испытаний на усталость. - М.: Стандарт, 2005.
  4. Panin V.E., Egorushkin V.E. Nonequilibrium thermodynamics of a deformed solid as a multiscale system. Corpuscular-wave dualism of plastic shear // Physical Mesomechanics. - 2008. - Vol. 11. - No. 3-4. - Р. 105-123. doi: 10.1016/j.physme.2008.07.001
  5. Панин В.Е. Физическая мезомеханика материалов. - Томск: Изд-во ТГУ, 2015. - Т. 1. - 460 с.; Т. 2. - 462 с.
  6. Bathias C., Paris P.C. Gigacycle fatigue in mechanical practice. - New York: Marcel Dekker, 2005. - 305 p.
  7. Sakai T., Ochi Y. Proceedings of the Third International Conference on Very High Cycle Fatigue (VHCF-3), September 16-19, 2004, Ritsumeikan University. Japan: Kusatsu. - The Society of Materials Science, Japan, 2004. - 690 p.
  8. Miner M.A. Cumulative damage in fatigue // J. Appl. Mech. - 1945. - Р. A159-A164.
  9. Шанявский А.А. Моделирование усталостных разрушений металлов. Синергетика в авиации. - Уфа: Монография, 2007. - 500 с.
  10. Шабалин B.И. Экспериментальное исследование формы кривой усталости // Прочность металлов при циклических нагрузках / под ред. В.С. Ивановой. - М.: Наука, 1967. - С. 162-169.
  11. Иванова В.С., Терентьев В.Ф. Природа усталости металлов - М.: Металлургия, 1975. - 455 с.
  12. Panin V.E. Synergetic principles of physical mesomechanics // Physical Mesomechanics. - 2000. - Vol. 3. - No. 6. - Р. 5-34.
  13. Stulen F.B. On the statistical nature of fatigue // ASTM Symposium on Statistical Nature of Fatigue. - 1951. - STP No. 121. - Р. 23-44. doi: 10.1520/STP43997S
  14. Bastenair F. Aspect aleatoire du phenomen de fatigue. Description mathematique at traitement tatistique // La Fatigue Dans les Materiaux. Aspects Physiques et Mechaniques. Ed. H.-J. Boiteux. - Paris: Edisciense, 1973. - Р. 107-145.
  15. Бастенер Ф., Бастьен М., Помэ Ж. Статистический анализ результатов новых усталостных испытаний // Усталость и выносливость металлов: сб. / под ред. Г.В. Ужика. - М.: Изд-во иностр. лит., 1961. - С. 56-72.
  16. Степнов М.Н. Статистическая обработка результатов механических испытаний. - М.: Машиностроение, 1972. - 232 с.
  17. Захарова Т.П. К вопросу о статистической природе усталостной повреждаемости сталей и сплавов // Проблемы прочности. - 1974. - № 4. - С. 17-23.
  18. Захарова Т.П. Статистическая природа усталости // Конструкционная прочность машин и деталей газотурбинных двигателей / под ред. И.А. Биргера, Б.Ф. Балашова. - М.: Машиностроение, 1981. - С. 23-29.
  19. Трощенко В.Т., Сосновский Л.А. Сопротивление усталости металлов и сплавов: справочник в двух частях. - Киев: Наукова думка, 1987. - Ч. 1. - 347 с.
  20. Shanyavskiy A., Zaharova T., Potapenko Yu. The nature of multi-modal distribution of fatigue durability for titanium alloy VT9. Ed. by J.E. Allison, J.W. Jones, J.M. Larsen, R.O. Ritchie // Proceedings of the Forth International Conference on Very High Cycle Fatigue (VHCF-4), August 19-22, 2007, University of Michigan, Ann Arbor. - Michigan, USA. - TMS, 2007. - Р. 325-330.
  21. Weibull W. A statistical representation of fatigue failures in solids. - Stockholm: Kungl Tekniska / Hogskolans Hunlingar, 1949. - 234 p.
  22. Murakami Yu. Metals fatigue: effects of small defects and nonmetallic inclusions - London, UK: Elsevier Ltd, 2002. - 370 р.
  23. Review and new analysis on fatigue crack initiation mechanisms of interior inclusion-induced fracture of high strength steels in very high cycle regime. Ed. С. Berger, H.-J. Christ / T. Sakai, W. Li, B. Lian, N. Oguma // Proceedings of the Fifth International Conference on Very High Cycle Fatigue (VHCF-5), June 28-30, 2011, Berlin, Germany. - DVM, Berlin, 2011. - Р. 19-26.
  24. An understanding of crack growth in VHCF from an internal inclusion in high strength steel / C. Wang, A. Nikitin, A. Shanyavskiy, C. Bathias // Proc. Intern. Conf. “Crack path” (CP2012), Gaeta, 11-14 September, 2012. - P. 43.
  25. The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-strength steels / Y. Hong, X. Liu, Z. Lei, C. Sun // International Journal of Fatigue. - 2016. - Vol. 89. - Р. 108-118. doi: 10.1016/j.ijfatigue.2015.11.029
  26. Shanyavskiy A., Banov M. The twisting mechanism of subsurface fatigue cracking in Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy // Engineering Fracture Mechanics. - 2010. - Vol. 77. - No. 11. - Р. 1896-1906. doi: 10.1016/j.engfracmech.2010.04.011
  27. Shanyavskiy A.A., Banov M.D., Zakharova T.P. Principles of physical mesomechanics of nanostructural fatigue of metals. Part II. Subsurface fracture of EP741 heat-resistant alloy // Physical Mesomechanics. - 2010. - Vol. 13. - No. 3-4. - Р. 143-151. doi: 10.1016/j.physme.2010.07.005
  28. Tyumentsev A.N., Ditenberg L.A. Nanodipoles of partial disclinations as quasi-ductile strain carriers responsible for nanocrystalline structure formation in metals and alloys under severe plastic deformation // Physical Mesomechanics. - 2011. - Vol. 14. - No. 5-6. - Р. 249-260. doi: 10.1016/j.physme.2011.12.004
  29. Трибоконтакт в парах трения как многоуровневая иерархически организованная система / В.Е. Панин [и др.] // Физ. мезомех. - 2010. - Т. 13, № 6. - С. 35-46.
  30. Шанявский А.А. Эквивалентное напряжение одноосного циклического растяжения как энергетическая характеристика усталости металла в условиях многопараметрического нагружения // Физ. мезомех. - 2017. - Т. 20, № 4. - С. 33-42.
  31. Mughrabi H. On ‘multi-stage’ fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue // Fatigue and Fracture of Engineering Materials and Structures. - 2002. - Vol. 25. - No. 8-9. - Р. 755-764. doi: 10.1046/j.1460-2695.2002.00550.x
  32. Шанявский А.А., Солдатенков А.П. Масштабные уровни так называемого «предела усталости» металлов // Физ. мезомех. - 2019. - Т. 22, № 1. (в печати).

Copyright (c) 2021 Shanyavskiy A.A., Soldatenkov A.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies